Tensile Ductility of Cast TiAl Alloys

Article Preview

Abstract:

The microstructural characteristics and room temperature tensile ductility in some cast TiAl alloys were analyzed. It was found that grain refinement, either through Q&A treatment in boron-free alloys or through low dose of boron addition in beta solidifying alloys with lamellar microstructures, is not sufficient for good ductility. For cast alloys with convoluted microstructures and fine lamellar microstructures the orientation distribution of gamma grains/lamellar colonies plays an important role in controlling ductility. In those fine-grained alloys a highly random orientation distribution of gamma grains/lamellar colonies is essential to improvement in ductility.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

1336-1341

Citation:

Online since:

January 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.E. Larsen, in: Intermetallic Matrix Composites, edited by D.L. Anton, R. McMeeking, D. Miracle and P. Martin, volume 194 of Materials Research Society Symposium Proceeding, Materials Research Society, PA (1990), p.285.

Google Scholar

[2] C.M. Austin, T.J. Kelly, in: Structural Intermetallics, edited by R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle and M.V. Nathal, TMS PA (1993), p.143.

Google Scholar

[3] Y-W. Kim and D.M. Dimiduk: JOM Vol. 43 N. 8 (1991), p.40.

Google Scholar

[4] D. Hu, in: Ti-2003 Science and Technology, edited by G. Lütjering, J. Abrecht, Wyley-Vch, Weinheim, (2004), p.2369.

Google Scholar

[5] X. Wu and D. Hu: Scripta Materialia Vol. 52 (2005), p.731.

Google Scholar

[6] D. Hu. X. Wu and M H Loretto: Intermetallics Vol. 13 (2005), p.914.

Google Scholar

[7] H. Saage, A.J. Huang, D. Hu, M.H. Loretto and X Wu: Intermetallics Vol. 17 (2009), p.32.

Google Scholar

[8] A.J. Huang, PhD thesis, University of Birmingham (1996).

Google Scholar

[9] S.R. Dey, E. Bouzy and A. Hazotte: Intermetallics Vol. 14 (2006), p.444.

Google Scholar

[10] C.T. Forwood, M.A. Gibson, P.R. Miller, C.J. Rossouw and A.J. Morton, in: Structural Intermetallics 1997, edited by M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner and M. Yamaguchi, TMS PA (1997), p.545.

Google Scholar

[11] R.M. Imayev, V.M. Imayev, M. Oehring and F. Appel: Intermetallics Vol. 15 (2007), p.451.

DOI: 10.1016/j.intermet.2006.05.003

Google Scholar

[12] U. Hecht, V. Witusiewicz, A. Drevermann, J. Zollinger: Intermetallics Vol. 16 (2008), p.969.

Google Scholar

[13] D. Hu: Intermetallics Vol. 10 (2002), p.851.

Google Scholar

[14] N.J. Rogers and P. Bowen, in: Structural intermetallics, edited by R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle and M.V. Nathal, TMS PA (1993), p.231.

Google Scholar

[15] K.S. Chan, J. Onstott and K.S. Kumar: Metallurgical and Materials Transactions A Vol. 31A (2000), p.71.

Google Scholar

[16] D. Hu, H. Jiang, N. Mota Solis and X. Wu: Intermetallics Vol. 14 (2006), p.82.

Google Scholar