Physical and Mechanical Properties of Single Crystals of Co-Al-W Based Alloys with L12 Single-Phase and L12/fcc Two-Phase Microstructures

Article Preview

Abstract:

The values of all the three independent single-crystal elastic constants and polycrystalline elastic constants of Co3(Al,W) experimentally determined by resonance ultrasound spectroscopy at liquid helium temperature are 15~25% larger than those of Ni3(Al,Ta) but are considerably smaller than those previously calculated. Because of the large value of E111/E100 and cij of Co3(Al,W), two-phase microstructures with cuboidal L12 precipitates well aligned parallel to <100> and well faceted parallel to {100} are expected to form very easily in Co-base alloys, as confirmed indeed by experiment. Values of yield stress obtained for [001]-oriented L12/fcc two-phase single crystals moderately decrease with the increase in temperature up to 800°C and then decrease rapidly with temperature above 800°C without any anomaly in yield stress.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

1342-1347

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Yamaguchi, H. Inui and K. Ito: Acta Mater. Vol. 48 (2000), p.307.

Google Scholar

[2] D.P. Pope and S.S. Ezz: Intl. Metals Rev. Vol. 29 (1984), p.136.

Google Scholar

[3] T.M. Pollock and R.D. Field, in Dislocations in Solids, Vol. 11, edtied by F.R.N. Nabarro and M.S. Duesbery, Elsevier, Amsterdam, (2002), p.546.

Google Scholar

[4] F.R.N. Nabarro and M.S. Duesbery: Dislocations in Solids, Vol. 10 (Elsevier, Amsterdam, 1997).

Google Scholar

[5] H. Harada, K. Ohno, T. Yamagata, T. Yokokawa and M. Yamazaki: Superalloys 1988 (1988), p.513.

Google Scholar

[6] T. Ichitsubo, and K. Tanaka: Acta Mater. Vol. 53 (2005), p.4497.

Google Scholar

[7] A.M. Beltran, in Superalloys II, edtied by C.T. Sims, N.S. Stoloff and W.C. Hagel, Wiley, New York, (1987), p.135.

Google Scholar

[8] T.C. Du Mond, P.A. Tully and K. Wikle, in Metals Handbook, 9 th edition, Vol. 3, American Society for Metals, Metals Park, OH, (1980), p.589.

Google Scholar

[9] J. Sato, T. Omori, I. Ohnuma, R. Kainuma and K. Ishida: Science Vol. 312 (2006), p.90.

Google Scholar

[10] A. Suzuki, G.C. DeNolf and T.M. Pollock: Scripta Mater. Vol. 56 (2007), p.385.

Google Scholar

[11] A. Suzuki and T.M. Pollock: Acta Mater. Vol. 56 (2008), p.1288.

Google Scholar

[12] S. Miura, K. Ohkubo and T. Mohri: Mater. Trans. JIM Vol. 48 (2007), p.2403.

Google Scholar

[13] K. Tanaka, T. Ohashi, K. Kishida and H. Inui: Appl. Phys. Let. Vol. 91 (2007), p.181907.

Google Scholar

[14] Q. Yao, H. Xing and J. Sun: Appl. Phys. Lett. Vol. 89 (2006), 161906.

Google Scholar

[15] K. Tanaka and M. Koiwa: Intermetallics Vol. 4 (1996), p. S29.

Google Scholar

[16] K. Tanaka and M. Koiwa: High Temp. Mater. Processes Vol. 18 (1999), p.323.

Google Scholar

[17] D.G. Pettifor: Mater. Sci. Tech. Vol. 8 (1992), p.345.

Google Scholar

[18] S. F. Pugh: Phil. Mag. Vol. 45 (1954), p.823.

Google Scholar

[19] A. Couret, Y.Q. Sun and P.B. Hirsch: Phil. Mag. A, Vol. 67 (1993), p.29.

Google Scholar