On the Utilization of Plastic Instability Criterion in Ductility Assessment of Ultrafine-Grained Microalloyed Steel

Article Preview

Abstract:

In the present study, ultrafine-grained (UFG: grain size < 1m) HSLA and IF steels were investigated. The tensile test results showed that, because of different strengthening mechanisms, UFG HSLA steel represents finally better ductility than initially more ductile IF steel. The analysis performed in the present study is based on the mechanism of generation the dislocation structures and takes into account effects of precipitation and solid solution strengthening. The results of this analysis, implemented in FEM, enable to capture the moment of plastic instability of ultrafine-grained microalloyed steels. A good convergence of the proposed model was observed for the investigated steels. The fact that ductility, strengthening and deformation mechanisms are strictly connected to each other suggests that the proper use of their synergetic effect may be used to improve the ductility of UFG materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

1977-1982

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Song , D. Ponge, D. Raabe, J.G. Speer, D.K. Matlock: Mater. Sci. Eng. A Vol. 441 (2006), p.1.

Google Scholar

[2] K. Muszka, J. Majta, P.D. Hodgson, in Study of the grain size effect on the deformation behavior of mciroalloyed Steels, Proc. Materials Science And Technology, Detroit, MI, (2007).

Google Scholar

[3] C.C. Koch: Scripta Mater. Vol. 49 (2003), p.657.

Google Scholar

[4] G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, Boston, MA, (1986).

Google Scholar

[5] P. Haasen., Physical Metallurgy, Cambridge University Press, Cambridge, (1978).

Google Scholar

[6] A. Considère: Mèmoire sur l'emploi du fer et de l'acier dans les constructions. Paris, 1886.

Google Scholar

[7] Z.S. Basinski, M.S. Szczerba, J.D. Embury: Philos. Mag. A, Vol. 76, 4 (1997), p.743.

Google Scholar

[8] A. Ohmori A., S. Torizuka, K. Nagai: ISIJ Inter., 44, 2004, p.1063.

Google Scholar

[9] I. Sabirov, Y. Estrin, M.R. Barnett, I. Timonkhina, P.D. Hodgson: Scripta Mater., Vol. 58, (2008), p.163.

Google Scholar

[10] K. Muszka, J. Majta, P.D. Hodgson: ISIJ Inter., Vol. 47 (2007), p.1221.

Google Scholar

[11] K. Muszka, P.D. Hodgson, J. Majta: Mater. Sci. Eng. A Vol. 500 (2009), p.25.

Google Scholar

[12] N. Tsuji, Y. Ito, Y. Saito, Y Minamino: Scripta Mater. Vol. 43 (2002), p.893.

Google Scholar

[13] K.T. Park, Y.S. Kim, J.G. Lee, D.H. Shin: Mater Sci. Eng. A Vol. 293 (2000), p.165.

Google Scholar

[14] K. Nagai: J. Mater. Proc. Techn. Vol. 117 (2001), p.329.

Google Scholar

[15] Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y. T. Zhu: Adv. Mater. Vol. 18 (2006), p.2280.

Google Scholar

[16] F.J. Humphreys: Acta Metall. Vol. 25 (1977), p.1323.

Google Scholar

[17] E. Hornbogen, U. Koster: Recrystallization of Metallic Materials, edited by Haessner F., Verlag, Stuttgart (1978) p.159.

Google Scholar

[18] I. Samajdar, B. Verlinden, P. Van Houtte, D. Vanderschueren: Mater. Sci. Eng. A238 (1997), p.343.

Google Scholar

[19] R. Song, D. Ponge, D. Raabe: Scripta Mater. Vol. 52 (2005), p.1075.

Google Scholar

[20] A.S. Khan, Y.S. Suh, X. Chen, L. Takacs, H. Zhang: Int. J. Plast. Vol. 22 (2006), p.195.

Google Scholar