Characteristics of High Temperature Creep in Pure Aluminum Processed by Equal-Channel Angular Pressing

Article Preview

Abstract:

High purity aluminum was processed by equal-channel angular pressing (ECAP) to reduce the grain size to ~1.3 m. Tensile specimens were cut from the as-pressed billets and these specimens were tested under conditions of high temperature creep. The results show excellent creep properties with a well-defined region of steady-state flow. The flow behavior is analyzed by comparing the creep data with the predicted behavior for different fundamental creep mechanisms and by plotting a deformation mechanism map to provide a visual representation of the creep properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

1965-1970

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Horita, T. Fujinami, M. Nemoto, T.G. Langdon: Metall. Mater. Trans. Vol. 31A (2000), p.691.

Google Scholar

[2] M. Kawasaki, T.G. Langdon: J. Mater. Sci. Vol. 42 (2007), p.1782.

Google Scholar

[3] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon: Mater. Sci. Eng. Vol. A257 (1998), p.328.

Google Scholar

[4] M. Furukawa, Z. Horita, T.G. Langdon: Mater. Sci. Eng. Vol. A332 (2002), p.97.

Google Scholar

[5] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon: Scripta Mater. Vol. 35 (1996), p.143.

Google Scholar

[6] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon: Acta Mater. Vol. 45 (1997), p.4733.

Google Scholar

[7] K. Nakashima, Z. Horita, M. Nemoto, T.G. Langdon: Acta Mater. Vol. 46 (1998), p.1589.

Google Scholar

[8] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon: Acta Mater. Vol. 46 (1998), p.3317.

Google Scholar

[9] S.D. Terhune, D.L. Swisher, K. Oh-ishi, Z. Horita, T.G. Langdon, T.R. McNelley: Metall. Mater. Trans. A Vol. 33A (2002), p.2173.

DOI: 10.1007/s11661-002-0049-x

Google Scholar

[10] V. Sklenicka, J. Dvorak and M. Svoboda, in: Nanomaterials by Severe Plastic Deformation (NanoSPD2), edited by M.J. Zehetbauer and R.Z. Valiev, Wiley-VCH: Weinheim, Germany, (2002), p.200.

Google Scholar

[11] V. Sklenička, J. Dvořák, M. Svoboda: Mater. Sci. Eng. Vol. A387-389 (2004), p.696.

Google Scholar

[12] V. Sklenicka, J. Dvorak and M. Svoboda, in: Ultrafine Grained Materials III, edited by Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin and T.C. Lowe, The Minerals, Metals and Materials Society/Warrendale, PA (2004), p.647.

Google Scholar

[13] V. Sklenička, J. Dvořák, P. Kral, Z. Stonawska, M. Svoboda: Mater. Sci. Eng. Vol. A410-411 (2005), p.408.

Google Scholar

[14] V. Sklenička, J. Dvořák, M. Kvapilova, M. Svoboda, P. Král, I. Saxl, Z. Horita: Mater. Sci. Forum Vol. 539-543 (2007), p.2904.

Google Scholar

[15] M. Kawasaki, I.J. Beyerlein, S.C. Vogel, T.G. Langdon: Acta Mater. Vol. 56 (2008), p.2307.

Google Scholar

[16] C. Xu, M. Kawasaki, T.G. Langdon, Int. J. Mater. Res. 2009 (in press).

Google Scholar

[17] T.G. Langdon: Scripta Metall. Vol. 4 (1970), p.693.

Google Scholar

[18] F.R.N. Nabarro, in: Report of a Conference on Strength of Solids, The Physical Society, London, U.K. (1948), p.75.

Google Scholar

[19] C. Herring: J. Appl. Phys. Vol. 21 (1950), p.437.

Google Scholar

[20] R.L. Coble: J. Appl. Phys. Vol. 34 (1963, p.1679.

Google Scholar

[21] T.G. Langdon: Acta Metall. Mater. Vol. 42 (1994), p.2437.

Google Scholar

[22] F.A. Mohamed, T.G. Langdon: Metall. Trans. Vol. 5 (1974), p.2339.

Google Scholar

[23] M.F. Ashby: Acta Metall. Vol. 20 (1972), p.887.

Google Scholar

[24] T.G. Langdon, F.A. Mohamed: J. Mater. Sci. Vol. 13 (1978), p.1282.

Google Scholar