Effect of Carbon Addition of Shape Memory Properties of TiNb Alloys

Article Preview

Abstract:

In order to increase critical stress for slip in Ti-Nb base shape memory alloys, strengthening by carbon additions (0.2 and 0.5mass%C) to Ti-27mol%Nb was investigated. It was found that all the alloys were  (bcc) phase at room temperature, and TiC existed in C-added alloys. The grain size was decreased with carbon content due to grain boundary pinning. Texture measurement revealed that strong {112}<110> recrystallization texture was formed in C-free alloy and that weak {001}<110> texture in C-added alloys. Tensile tests revealed that clear superelasticity appeared in C-free alloy but that stress-induced martensitic transformation seems to be suppressed by TiC in C-added alloys. The critical stress for slip was linearly increased by carbon content. Then, carbon addition affects the shape memory properties of TiNb alloys, and is effective to enhance the critical stress for slip.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

2046-2051

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Miyazaki, H. Y. Kim and H. Hosoda: Mat. Sci. Eng. A 438-440 (2006) p.18.

Google Scholar

[2] A. R. G. Brown, D. Clark, J. Eastabrook and K. S. Jepson: Nature 201 (1964) p.914.

Google Scholar

[3] T. Inamura, J. I. Kim, H. Y. Kim, H. Hosoda, K. Wakashima and S. Miyazaki: Philos. Mag., 87 (2007) p.3325.

Google Scholar

[4] C. Baker: Metal Sci. J., 5 (1971) p.92.

Google Scholar

[5] H. Y. Kim, H. Satoru, J. I. Kim, H. Hosoda and S. Miyazaki: Mat. Trans. 45 (2004) p.2443.

Google Scholar

[6] Y. Fukui, T. Inamura, H. Hosoda, K. Wakashima and S. Miyazaki: Mat. Trans. 45 (2006) p.1077.

Google Scholar

[7] J. I. Kim, H. Y. Kim, T. Inamura, H. Hosoda and S. Miyazaki: Mat. Trans. 47 (2006) p.505.

Google Scholar

[8] S. Miyazaki: Materia Japan 35 (1996) p.179.

Google Scholar

[9] J. I. Kim, H. Y. Kim, H. Hosoda and S. Miyazaki: Mat. Trans. 46 (2006) p.852.

Google Scholar

[10] Y. Horiuchi, T. Inamura, H. Hosoda, K. Wakashima, H. Y. Kim and S. Miyazaki: Mat. Sci. Eng. A 438-440 (2006) p.830.

Google Scholar

[11] H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda and S. Miyazaki: Acta Mater. 54 (2006) p.2419.

Google Scholar

[12] in: Binary Alloy Phase Diagrams, ed. By T. B. Massalski, Vol. 1, p.577 (C-Nb) and p.593 (C-Ti), ASM, USA (1986).

Google Scholar

[13] T. Inamura, Y. Fukui, H. Hosoda, K. Wakashima and S. Miyazaki: Mat. Sci. Eng. C 25 (2005) p.426.

Google Scholar

[14] D. L. Moffat and D. C. Larbalestier: Metall. Trans. A 19A (1988) p.1677.

Google Scholar

[15] T. Saburi: in Shape Memory Materials, ed. by K. Otsuka and C. M. Wayman, Chapter 3, p.49, Cambridge University Press, UK (1998).

Google Scholar