Structure and Phase Stability of NiMnGa Ferromagnetic Shape Memory Alloys by Experimental and Ab Initio Techniques

Article Preview

Abstract:

This paper summarizes some of our recent results on crystal structure, microstructure, orientation relationship between martensitic variants and crystallographic features of martensitic transformation in Ni-Mn-Ga FSMAs. It was shown that Ni53Mn25Ga22 has a tetragonal I4/mmm martensitic structure at room temperature. The neighboring martensitic variants in Ni53Mn25Ga22 have a compound twinning relationship with the twinning elements K1={112}, K2={11-2}, η1=<11-1>, η2=<111>, P={1-10} and s=0.379. The ratio of the relative amounts of twins within the same initial austenite grain is ~1.70. The main orientation relationship between austenite and martensite is Kurdjumov-Sachs (K-S) relationship. Based on the crystallographic phenomenological theory, the calculated habit plane is {0.690 -0.102 0.716}A (5.95° from {101}A), and the magnitude, direction and shear angle of the macroscopic transformation shear are 0.121, <-0.709 0.105 0.698>A (6.04° from <-101>A) and 6.88°, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

2040-2045

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Y. Cong, P. Zetterström, Y. D. Wang, R. Delaplane, R. Lin Peng, X. Zhao, and L. Zuo: Appl. Phys. Lett. Vol. 87 (2005), Art. No. 111906.

DOI: 10.1063/1.2043250

Google Scholar

[2] D. Y. Cong, Y. D. Zhang, Y. D. Wang, C. Esling, X. Zhao and L. Zuo: J. Appl. Cryst. Vol. 39 (2006), p.723.

Google Scholar

[3] D. Y. Cong, Y. D. Zhang, Y. D. Wang, M. Humbert, X. Zhao, T. Watanabe, L. Zuo and C. Esling: Acta Mater. Vol. 55 (2007), p.4731.

Google Scholar

[4] J. W. Christian and S. Mahajan: Prog. Mater. Sci. Vol. 39 (1995), pp.1-157.

Google Scholar

[5] M. S. Wechsler, D. S. Lieberman and T. A. Read: Trans. AIME Vol. 197 (1953), p.1503.

Google Scholar

[6] P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964), B864; W. Kohn and L. Sham, Phys. Rev. 140 (1965), 1133.

DOI: 10.1103/physrev.136.b864

Google Scholar

[7] D. Vanderbilt, Phys. Rev. B 41 (1990), 7892.

Google Scholar

[8] P.E. Blochl, Phys. Rev. B 50 (1994), 17953.

Google Scholar

[9] J. P. Perdew and Y. Wang, Phys. Rev. B 45 (1991), 13244.

Google Scholar

[10] D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45 (1980), 566.

Google Scholar

[11] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13 (1976), 5188.

Google Scholar

[12] P. J. Webster, K. R. Ziebeck, S. L. Town and M. S. Peak, Philos. Mag. B, 49 (1984), 295.

Google Scholar