High-Temperature Oxidation Resistance and Crack-Healing Function of Ni/Al2O3 Nano-Hybrid Materials

Article Preview

Abstract:

High-temperature oxidation resistance of Ni/Al2O3 nano-hybrid materials was described in this paper. Y2O3 doping and SiC co-dispersion in Ni/Al2O3 nano-hybrid materials are useful techniques to improve high-temperature oxidation resistance. On the other hand, nano-Ni/Al2O3 has the crack healing function by high-temperature annealing in air. SiC-Ni/Al2O3 nano-hybrid materials have similar crack healing performance with better oxidation resistance at high temperatures than Ni/Al2O3 nano-hybrid materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

2148-2153

Citation:

Online since:

January 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Sekino, T. Nakajima, S. Mihara. S. Ueda and K. Niihara, in: Ceram. Trans. Vol. 44: Materials Processing and Design II, edited by K. Niihara, K. Ishizaki and M. Isotani (The American Ceramic Society, 1994), p.243.

Google Scholar

[2] T. Sekino, T. Nakajima, S. Ueda and K. Niihara, J. Am. Ceram. Soc. Vol. 80 (1997), p.1139.

Google Scholar

[3] T. Sekino, S. Ethh, H. Kondo, Y-H. Choa and K. Niihara: Key Eng. Mater. Vol. 161-163 (1999), p.489.

Google Scholar

[4] T. Sekino, Y. Choa, A. Nakahira and K. Niihira: Materia Jpn., Vol. 38 (1999), p.425.

Google Scholar

[5] M. Nanko, M. Mizumo, M. Watanabe, K. Matsumaru and K. Ishizaki: Adv. Tech. Mater. Mater Proc. J., Vol. 6 (2004), p.240.

Google Scholar

[6] M. Nanko, in: ECS Proc. 2004-16: High Temperature Corrosion and Materials Chemistry V, edited by E. Opila, J. Fergus, T. Maruyama and J. Mizusaki (The Electrochemical Society, 2004), p.139.

Google Scholar

[7] M. Nanko: Sci. Technol. Adv. Mater. Vol. 6 (2005) p.129.

Google Scholar

[8] T. C. Wang, R. Z. Chen and W. H. Tuan: J. Euro. Ceram. Soc. Vol. 23 (2003), p.927.

Google Scholar

[9] T. C. Wang, R. Z. Chen and W. H. Tuan: J. Euro. Ceram. Soc. Vol. 24 (2004), p.833.

Google Scholar

[10] S. Watanabe, H. Yoshida, T. Sakuma: Key Eng. Mater. Vol. 247(2003), p.67.

Google Scholar

[11] D. Prot, M. Le Gall, B. Lesage, A. M. Huntz, C. Monty: Phil. Mag. A Vol. 73(1996), p.935.

Google Scholar

[12] T. Nakagawa, I. Sakaguchi, N. Shibata, K. Matsunaga, T. Mizoguchi, T. Yamamoto, H. Hanedab, Y. Ikuhara: Acta Mater. Vol. 55 (2007), p.6627.

DOI: 10.1016/j.actamat.2007.08.016

Google Scholar

[13] K. Ando, B. S. Kim, M. C. Chu, S. Saito and K. Takahashi: Fatigue Fract. Engng. Mater. Struct. Vol. 27 (2004), p.533.

Google Scholar

[14] K. Ando, K. Furusawa, K. Takahashi and S. Sato: J. Euro. Ceram. Soc. Vol. 25 (2005), p.549.

Google Scholar

[15] O. Abe and Y. Ohwa: Solid State Ionics Vol. 172 (2204), p.533.

Google Scholar

[16] O. Abe, Y. Ohwa and Y. Kuranobu: J. Euro. Ceram. Soc. Vol. 26 (2005), p.689.

Google Scholar

[17] A. L. Salas-Villasenor, J. Lemus-Ruiz, D. Maruoka and M. Nanko: submitted to Advanced Materails Research.

Google Scholar

[18] M. Nanko: submitted to J. Ceram. Proc. Res.

Google Scholar