Creep Behavior and Microstructure of 8Cr Oxide Dispersion Strengthened Martensitic Steel

Article Preview

Abstract:

In international thermonuclear experimental reactor (ITER), reduced activation ferritic/martensitic steels will be used for plasma-facing materials. However, it is necessary to raise the temperature of operation in order to elevate efficiency of electric power generation by using the material which is more excellent in strength at elevated temperature. Oxide dispersion strengthened (ODS) steels are promising candidate for high temperature materials of a nuclear fusion reactor. There are many reports that ODS steels show very high creep strength, but there are few reports on creep deformation mechanism. In this work, creep deformation behavior of 8 wt% Cr ODS steel was investigated. This ODS steel had high density of fine dispersed Y2Ti2O7 particles and -ferrite grains elongated along the hot-rolling direction. The creep curve showed a low creep strain rate until specimen ruptured. Vickers hardness of the gauge part of specimens in interrupted creep tests decreased with increasing the loading time. However, that of the grip part did not change significantly. Accordingly, although dynamic recovery occurred in the ODS steel, it had not affected the creep deformation rate.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

2309-2314

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Tamura, K. Shinozuka, H. Esaka, S. Sugimoto, K. Ishizawa and K. Masamura: J. Nucl. Mater. Vol. 283-287 (2000).

Google Scholar

[2] M. Tamura, H. Kusuyama, K. Shinozuka and H. Esaka: ISIJ Int. Vol. 47 (2007), p.317.

Google Scholar

[3] A. -A.F. Tavassoli et al.: J. Nucl. Mater. Vol. 329-333 (2004), p.2.

Google Scholar

[4] A. Alamo, V. Lambard, X. Averty and M.H. Mathon: J. Nucl. Mater. Vol. 329-333 (2004), p.333.

Google Scholar

[5] R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heartherly, D.T. Hoelzer, N. Hashimoto, E.A. Kenik and K. Miyahara: J. Nucl. Mater. Vol. 307-311 (2002), p.773.

DOI: 10.1016/s0022-3115(02)01046-2

Google Scholar

[6] S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta and H. Nakashima: J. Nucl. Sci. Tech. Vol. 39 (2002), p.872.

Google Scholar

[7] S. Ukai, T. Kaito, S. Ohtsuka, T. Narita, M. Fujiwara and T. Kobayashi: ISIJ Int. Vol. 43 (2003), p. (2038).

DOI: 10.2355/isijinternational.43.2038

Google Scholar

[8] R. Lindau, A. Möslang, M. Schirra, P. Schlossmacher and M. Klimenkov: J. Nucl. Mater. Vol. 307-311 (2002), p.769.

DOI: 10.1016/s0022-3115(02)01045-0

Google Scholar

[9] V. de Castro et al.: J. Nucl. Mater. Vol. 367-370 (2007), p.196.

Google Scholar

[10] K. Shiba, M. Enoeda and S. Jitsukawa: J. Nucl. Mater. Vol. 239-333 (2004), p.243.

Google Scholar

[11] S. Ohtsuka, S. Ukai, H. Sakasegawa, M. Fujiwara, T. Kato and T. Narita: J. Nucl. Mater. Vol. 367-370 (2007), p.160.

Google Scholar

[12] K. Shinozuka, M. Tamura, H. Esaka, K. Shiba and K. Nakamura: J. Nucl. Mater. Vol. 384 (2009), p.1.

Google Scholar

[13] M. Tamura, H. Sakasegawa, A. Kohyama, H. Esaka and K. Shinozuka: J. Nucl. Mater. Vol. 329-333 (2004), p.328.

Google Scholar

[14] S. Ukai, T. Nishida and H. Okuda: J. Nucl. Sci. Tech. Vol. 34 (1997), p.256.

Google Scholar