Effect of Thermomechanical Processes on Σ3 Grain Boundary Distribution in a Nickel Base Superalloy

Abstract:

Article Preview

According to various studies, Grain Boundary Engineering (GBE) is likely to enhance mechanical properties of polycrystalline materials. The present investigation highlights some relationships between thermomechanical process (TMP) parameters of a commercial nickel-base superalloy PER72, supplied by Aubert & Duval (equivalent to Udimet®720™) and the resulting microstructure. The long-term goal is to develop TMPs that modify the Grain Boundary Character Distributions (GBCD) in order to improve high temperature properties. In this context, Grain Boundary Engineering (GBE) techniques are considered, thinking of replacing standard forming processes by optimised thermomechanical treatments. Mechanical testing at high temperature (compression and torsion tests) has been carried out and it is shown that multi-step treatments promote twinning. Some clues are then presented in an attempt to explain when and how twins are created.

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Main Theme:

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu

Pages:

2333-2338

DOI:

10.4028/www.scientific.net/MSF.638-642.2333

Citation:

N. Souaï et al., "Effect of Thermomechanical Processes on Σ3 Grain Boundary Distribution in a Nickel Base Superalloy", Materials Science Forum, Vols. 638-642, pp. 2333-2338, 2010

Online since:

January 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.