Superplasticity of a Sc and Zr Modified Al-6%Cu Alloy Subjected to ECAE

Article Preview

Abstract:

Superplasticity in an Al-6%Cu-0.45%Mg-0.4%Mn-0.16%Sc-0.12%Zr alloy subjected to intense plastic straining through equal-channel angular extrusion (ECAE) was studied in tension at strain rates ranging from 5.6×10-4 to 5.6×10-3 s-1 in the temperature interval 350-450°C. The alloy had a non-uniform microstructure with an average crystallite size of 1.2 m. The volume fraction of high-angle grain boundaries was about 57%. In spite of small crystallite size the alloy shows moderate superplastic properties. The highest elongation-to-failures of 320% appeared at a temperature of ~425°C and an initial strain rate of ~1.410-3 s-1, where the strain rate sensitivity coefficient, m, was about 0.33. The relationship between superplastic ductilities and microstructure stability is analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

291-296

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Pilling, N. Ridley, Superplasticity in crystalline solids, The Institute of Metals, London, (1989).

Google Scholar

[2] S. Komura, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon: Metall. Mat. Trans., 32A (2001), p.707.

Google Scholar

[3] F. Musin, R. Kaibyshev, Y. Motohashi, G. Itoh, Metall. Mater. Trans.: 35A (2004) p.2383.

Google Scholar

[4] R. Kaibyshev, K. Shipilova, F. Musin, Y. Motohashi: Mater. Sci. Techn., 21 (2005) p.408.

Google Scholar

[5] F.F. Musin, R.O. Kaibyshev, Y. Motohashi, T. Sakuma and G. Itoh: Mater. Trans., 43 (2002) p.2370.

Google Scholar

[6] K.T. Park, H.J. Lee, C.S. Lee, W.J. Nam, D.H. Shin: Scr. Mater., 51 (2004) p.479.

Google Scholar

[7] Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, T. G Langdon: Acta Mater., 48 (2000) p.3633.

Google Scholar

[8] F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, (2004).

Google Scholar

[9] H. Jazaeri, F.J. Humphreys: Acta Mater., 52 (2004) p.3251.

Google Scholar

[10] M Ferry, N.E. Hamilton, F.J. Humphreys: Acta Mater., 53 (2005) p.1097.

Google Scholar

[11] T. Aida, K. Matsuki, Z. Horita, T.G. Langdon: Scr. Mater., 44 (2001) p.575.

Google Scholar

[12] V.M. Segal: Mat. Sci. Eng., A197 (1995) p.157.

Google Scholar

[13] Z. Horita, M. Furukawa, , M. Nemoto, T. G. Langdon: Mater. Sci. Tech., 16 (2000) p.1239.

Google Scholar

[14] I. Nikulin, R. Kaibyshev, T. Sakai: Mater. Sci. Eng., A 407 (2005) p.62.

Google Scholar

[15] R. Kaibyshev, T. Sakai, I. Nikulin, F. Musin, A. Goloborodko: Mater. Sci. Tech. 19 (2003) p.1491.

Google Scholar

[16] O.A. Kaibyshev, Superplasticity of Alloys, Intermetallics, and Ceramics; Springer-Verlag, Berlin, (1992).

Google Scholar

[17] J. W. Edington, K. N. Melton, C. P. Cutler: Prog. Mater. Sci., 21 (1976) p.61.

Google Scholar