The Formation of Multiphase Microstructures in Low-Alloy Steel

Article Preview

Abstract:

Although relatively simple in its chemical composition, low-alloy steel can form in a wide variety of microstructures, which directly implies that the (mechanical) properties of the material can vary strongly. Mankind has been using this to his advantage for ages, but the requirements for modern production and use of the material necessitate an ever better insight in the formation of these microstructures. Newly developed steel grades like DP-steel (Dual-Phase) or TRIP-steel (Transformation-Induced Plasticity) consist of several of the well-known phases ferrite, bainite, martensite, austenite, which need to be carefully balanced in their amount, composition and morphology to attain the desired material properties. An overview is given of the basic principles of microstructure formation in low-alloy steel, and the implications for several types of multiphase steel microstructures, in relation to the mechanical properties, are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

3520-3530

Citation:

Online since:

January 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.W. Christian, The theory of transformation in metals and alloys, second edition, Pergamon Press, Oxford (1982).

Google Scholar

[2] W. Johnson and R.F. Mehl, Trans. AIME 135 (1939) 416.

Google Scholar

[3] M. Avrami, J. Chem. Phys. 8 (1940) 212.

Google Scholar

[4] A. Kolmogorov, Izv. Akademii Nauk. USSR Ser. Matemat. 1 (1937) 355.

Google Scholar

[5] J.W. Cahn, MRS Symp. Proc. 398 (1996) 425.

Google Scholar

[6] K.F. Kelton, in: H. Ehrenreich and D. Turnbull, editors, Solid State Physics, Academic Press, New York; vol. 45 (1991) 75.

Google Scholar

[7] S.E. Offerman, N.H. van Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen, L. Margulies, H.F. Poulsen, M. Th. Rekveldt and S. van der Zwaag, Science 298 (2002) 1003.

DOI: 10.1126/science.1076681

Google Scholar

[8] W.F. Lange III, M. Enomoto and H.I. Aaronson, Metall. Trans. A 19A (1988) 427.

Google Scholar

[9] J. Sietsma and S. van der Zwaag, Acta Materialia 52 (2004) 4143.

Google Scholar

[10] C. Zener, J. Appl. Phys. 20 (1949) 950.

Google Scholar

[11] A.A. Wheeler, W.J. Boettinger and G.B. McFadden, Phys. Rev. A 45 (1992) 7424.

Google Scholar

[12] I. Loginova, J. Odqvist, G. Amberg and J. Ågren, Acta Materialia 51 (2003) 1327.

Google Scholar

[13] J. Tiaden, B. Nestler, H.J. Diepers and I. Steinbach, Phys. D 115 (1998) 73.

Google Scholar

[14] M. Militzer, M.G. Mecozzi, J. Sietsma and S. van der Zwaag, Acta Materialia 54 (2006) 3961.

Google Scholar

[15] H.K.D.H. Bhadeshia, Bainite in Steels, The University Press, Cambridge, (2001).

Google Scholar

[16] H.K.D.H. Bhadeshia and J.W. Christian, Met. Trans. A 21A (1990) 767.

Google Scholar

[17] G.R. Purdy and M. Hillert, Acta Metall. 32 (1984) 823.

Google Scholar

[18] R.F. Bunshah and R.F. Mehl, Trans. AIME 197 (1953) 1251.

Google Scholar

[19] D.P. Koistinen and R.E. Marburger, Acta Metall. 7 (1959) 59.

Google Scholar

[20] K.W. Andrews, J. of the Iron and Steel Inst. 203 (1965) 721.

Google Scholar

[21] P. Jacques, X. Colnet, Ph. Harlet, J. Ladribre and F. Delannay, Met. Trans. A 29A (1998) 2383.

Google Scholar

[22] M. De Meyer, D. Vanderschueren and B.C. De Cooman, ISIJ International 39 (1999) 813.

Google Scholar

[23] V.I. Savran, Austenite formation in C-Mn steel, Ph.D. thesis, Delft University of Technology, (2009).

Google Scholar

[24] B.M. Bronfin, M.I. Gol'dshteyn, A.A. Yemel'yanov and A.Z. Shifman, Phys. Met. Metall. 59 (1985) 129.

Google Scholar

[25] M.J. Santofimia, L. Zhao, R.H. Petrov and J. Sietsma, Materials Characterization 59 (2008) 1758.

Google Scholar

[26] K. Sugimoto, M. Misu, M. Kobayashi and H. Shirasawa, ISIJ International 33 (1993) 775.

Google Scholar

[27] C. Thomser, Modelling of the mechanical properties of Dual Phase steels based on microstructure, Ph.D. thesis, RWTH Aachen, (2009).

Google Scholar

[28] S.O. Kruijver, L. Zhao, J. Sietsma, S.E. Offerman, N.H. van Dijk, L. Margulies, E.M. Lauridsen, S. Grigull, H.F. Poulsen and S. van der Zwaag, Steel Research 73 (2002) 236.

DOI: 10.1002/srin.200200202

Google Scholar

[29] E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright and S. van der Zwaag, Scripta Materialia 56 (2007) 421.

DOI: 10.1016/j.scriptamat.2006.10.041

Google Scholar

[30] J.G. Speer, A.M. Streicher, D.K. Matlock, F.C. Rizzo and G. Krauss, in: E.B. Damm, M. Merwin (eds. ), Austenite Formation and Decomposition, TMS/ISS, Warrendale, PA, 2003, p.505.

Google Scholar

[31] J.G. Speer, F.C. Rizzo, D.K. Matlock and D.V. Edmonds, Mater. Res. 8 (2005) 417.

Google Scholar

[32] J.G. Speer, D.K. Matlock, B.C. De Cooman and J.G. Schroth, Acta Materialia 51 (2003) 2611.

DOI: 10.1016/s1359-6454(03)00059-4

Google Scholar

[33] M.J. Santofimia, L. Zhao and J. Sietsma, Scripta Materialia 59 (2008) 159.

Google Scholar

[34] Y. Takahama, M.J. Santofimia, L. Zhao and J. Sietsma, to be published.

Google Scholar

[35] E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright and S. van der Zwaag , Acta Materialia 57 (2009) 533.

DOI: 10.1016/j.actamat.2008.09.040

Google Scholar

[36] D. Tjahjanto, Micromechanical modeling and simulations of transformation-induced plasticity in multiphase carbon steels, Ph.D. thesis, Delft University of Technology, (2008).

Google Scholar