Microstructure and its Formation Mechanism of Weld Metal of Al-Bearing TRIP Steel

Article Preview

Abstract:

A transformation-induced plasticity steel was welded by gas tungsten arc welding. The microstructure of fusion zone was analyzed by means of optical microscopy and scanning electron microscopy with EDS. It is found that fusion zone may be classified into two zones, the completely melted zone and the partially melted zone. The microstructure of completely melted zone consists predominantly of martensite and bainite, and that of partially melted zone consists mainly of martensite, bainite and ferrite. The formation mechanism of fusion zone microstructure is analyzed. The micro-hardness distribution of the joint was measured by microhardness tester. Test results show that the partially melted zone is softened, which is resulted from the formation of 20.6% ferrite. During the bending test, crack occurred at 125 degree bending angle. It is found that the crack originates from the partially melted zone because of deformation concentration.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

3591-3596

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.F. Zackay, E.R. Parker, D. Fahr and R. Bush. The enhancement of ductility in high strength steels [J]. Transactions of the American socity for metals, 1967, 60: 252-259.

Google Scholar

[2] J. Mahieu, J. Maki, B.C. De Cooman and S. Claessens. Phase transformation and mechanical properties of si-free CMnAl transformation-induced plasticity-aided steel [J]. Metallurgical and Materials Transactions A, 2002, 33(8): 2573-2580.

DOI: 10.1007/s11661-002-0378-9

Google Scholar

[3] H.C. Chen, H. Era and M. Shimizu. Effect of phosphorous on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet [J]. Metallurgical and Materials Transactions A, 1989, 20(3): 437-445.

DOI: 10.1007/bf02653923

Google Scholar

[4] M. De Meyer, D. Vanderschueren and B.C. De Cooman. The Influence of the substitution of Si by Al on the properties of cold rolled C-Mn-Si TRIP Steels [J]. ISIJ International, 1999, 39(8): 813-822.

DOI: 10.2355/isijinternational.39.813

Google Scholar

[5] S.J. Kim, C.G. Lee, T.H. Lee, C.S. Oh. Effect of Cu, Cr and Ni on mechanical properties of 0. 15 wt. % C TRIP-aided cold rolled steels [J]. Scripta Materialia, 2003, 48(5): 539-544.

DOI: 10.1016/s1359-6462(02)00477-3

Google Scholar

[6] J. Mahieu, M.D. Meyer, B.C. De Cooman. Galvanizability of high strength steels for automotive applications [C]. Galvanised Steel Sheet Forum- Automotive [A]. The Institute of Materials, London, UK, 2000, 185-198.

DOI: 10.1007/s11661-001-1042-5

Google Scholar

[7] J. Maki, J. Mahieu, B. C. De Cooman and S. Claessens. Galvanisability of silicon free CMnAl TRIP steels [J]. Materials Science and Technology, 2003, 19(1): 125-131.

DOI: 10.1179/026708303225009300

Google Scholar

[8] E. Giraulta, A. Mertensb, P. Jacquesb, Y. Houbaertc, B. Verlindena and J. V. Humbeecka. Comparison of the effects of silicon and aluminium on the tensile behaviour of multiphase TRIP-assisted steels [J]. 2001, 44(6): 885-892.

DOI: 10.1016/s1359-6462(00)00697-7

Google Scholar

[9] P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. Van Humbeeck and F. Delannay. The developments of cold-rolled TRIP-assisted multiphase steels. Al-alloyed TRIP-assisted multiphase steels [J]. ISIJ international, 2001, 41(9): 1068-1074.

DOI: 10.2355/isijinternational.41.1068

Google Scholar

[10] P. J. Jacques, E. Girault, P. Harlet and F. Delannay. The Developments of cold-rolled TRIP-assisted multiphase steels. Low silicon TRIP-assisted multiphase steels [J]. ISIJ international, 2001, 41(9): 1061-1067.

DOI: 10.2355/isijinternational.41.1061

Google Scholar

[11] T. K. Han, S. S. Park, K. H. Kim, C. Y. Kang, I. S. Woo and J. B. Lee. CO2 laser welding characteristics of 800 MPa class TRIP steel [J]. ISIJ International, 2005, 45 (1): 60-65.

DOI: 10.2355/isijinternational.45.60

Google Scholar

[12] S. Daneshpour, S. Riekehr, M. Kocak, V. Ventzke and A.I. Koruk. Failure behaviour of laser spot welds of TRIP800 steel sheets under coach-peel loading [J]. 2007, 12 (6): 508-515.

DOI: 10.1179/174329307x213855

Google Scholar

[13] S. S. Babu, J.W. Elmer, S. A. David and M. A. Quintana. In situ observations of non-equilibrium austenite formation during weld solidification of an Fe-C-Al-Mn low-alloy steel.

DOI: 10.1098/rspa.2001.0891

Google Scholar

[14] S.S. Babu, J.W. Elmer, J. M. Vitek, S. A. David. Time-resolved X-ray diffraction investigation of primary weld solidification in Fe-C-Al-Mn steel welds [J]. Acta Metallurgica, 2002, 50(7): 4763-4781.

DOI: 10.1016/s1359-6454(02)00317-8

Google Scholar