Precipitation Behavior of Steels with Various Copper during Continuous Cooling

Abstract:

Article Preview

The precipitation behavior of several Cu-bearing steels with various copper contents during continuous cooling has been studied. The optical microscope and HRTEM were employed to study the influence of cooling rate on the precipitation process. Also, the hardness of samples with different processes is tested. The results show that when the steels was cooled at a cooling rate between 0.1-1°C/s with the cooling rate increasing the second phase precipitates become finer but the precipitates become denser. When the cooling rate is 1°C /s the density of the second phase precipitates are the largest. When the cooling rate is quicker than 1°C /s as the cooling rate increase the precipitates become finer and fewer. The hardness tests also show that the sample will get the highest hardness. When the samples are cooled at a rate larger than 5°C /s, there is few precipitates in samples. The copper-rich second phase form by Inter-phase precipitation, and the copper-rich phase i.e. G.P zone is the main cause to strengthen the alloy. As the copper content varies from 1.5wt% to 2.5wt% the highest hardness could be obtain when the samples is cooled at a rate of 1°C /s and the density of the precipitates is the largest

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Main Theme:

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu

Pages:

3573-3578

DOI:

10.4028/www.scientific.net/MSF.638-642.3573

Citation:

X. M. Wang et al., "Precipitation Behavior of Steels with Various Copper during Continuous Cooling", Materials Science Forum, Vols. 638-642, pp. 3573-3578, 2010

Online since:

January 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.