Cyclic Deformation Behaviour and Damage Development on Different Hierarchical Levels in Cortical Bone

Article Preview

Abstract:

Bone is a complex natural composite material built of organic and anorganic components and very well adapted to the in vivo loading conditions. The material exhibits an excellent damage resistance under static and fatigue loading conditions. This is partially due to self-healing processes, but to a great extent also to its hierarchical microstructure. The investigation of the deformation behaviour and the damage mechanisms on different length scales gives valuable insight into which level(s) of hierarchy influence the fatigue resistance in which way. In the present work, cyclic deformation tests have been performed on cortical bone specimens. On one hand, stress-strain-hysteresis measurements in different types of tests, such as constant amplitude tests, load increase tests, and combined static and cyclic tests, give information on the active damage mechanisms. For example, changes in the development of the stiffness, non-elastic strain amplitude and non-elastic mean strain as a result of different loading velocities and stress levels allow the discrimination between time and cycle dependent damage mechanisms. These results were correlated with microstructural investigations of the damage development on different hierarchical levels by light and scanning electron microscopy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

548-553

Citation:

Online since:

January 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Taylor, in: Proc. 6th International Fatigue Congress Fatigue '96 Vol. III, edited by G. Lütjering, H. Nowack, Pergamon (1996), pp.1811-1816.

Google Scholar

[2] H.S. Gupta, J. Seto, W. Wagermaier, P. Zaslansky, P. Boesecke and P. Fratzl: PNAS Vol. 103 (2006), pp.17741-17746.

DOI: 10.1073/pnas.0604237103

Google Scholar

[3] V. Ebacher and R. Wang: Adv. Funct. Mater. Vol. 19 (2009), pp.57-66.

Google Scholar

[4] R.B. Martin, V.A. Gibson, S.M. Stover, J.C. Gibeling and L.V. Griffin: J. Biomech. Vol. 30 (1997), pp.109-114.

Google Scholar

[5] C. Fleck: Struktur und mechanische Eigenschaften kortikalen Knochens unter quasistatischer und zyklischer Beanspruchung (PhD thesis, Institute of Materials Science, University of Kaiserslautern, Germany, 1996).

Google Scholar

[6] D.R. Carter and W.E. Caler: J. Biomech. Vol. 14 (1981), pp.461-470.

Google Scholar

[7] D.R. Carter and W.C. Hayes: J. Biomech. Vol. 10 (1977), pp.325-337.

Google Scholar

[8] D.R. Carter and W.E. Caler: J. Biomech. Engng. /Trans. ASME Vol. 105 (1983), pp.166-170.

Google Scholar

[9] C.A.G. Pattin: Cyclic mechanical property degradation in bone during fatigue loading (PhD thesis, Stanford University, USA, 1990).

Google Scholar

[10] C. Fleck and D. Eifler: J. Biomech. Vol. 36 (2003), pp.179-189.

Google Scholar

[11] C. Fleck and D. Eifler: Adv. Eng. Mat. Vol. 9 (2007), pp.1069-1076.

Google Scholar

[12] T. Diab and D. Vashishth: Bone Vol. 37 (2005), pp.96-102.

Google Scholar

[13] M.B. Schaffler and K.J. Jepsen: Int. J. Fat. Vol. 22 (2000), pp.839-846.

Google Scholar

[14] E.F. Morgan, J.L. Lee and T.M. Keaveny: J. Biomech. Eng. Vol. 127 (2005), pp.557-562.

Google Scholar

[15] J.F. Lafferty and P.V.V. Raju: J. Biomech. Engng. Vol. 101 (1979), pp.112-113.

Google Scholar

[16] P. Zioupos, J.D. Currey and A. Casinos: J. Theor. Biol. Vol. 210 (2001), pp.389-399.

Google Scholar

[17] W.E. Caler and D.R. Carter, J. Biomech. Vol. 22 (1989), pp.625-635.

Google Scholar

[18] D. Taylor, in: Comprehensive structural integrity: Fracture of materials from nano to macro, vol. 9, edited by I. Milne, R.O. Ritchie, B.L. Karihaloo , Elsevier Inc., Oxford UK (2003), pp.35-96.

Google Scholar

[19] D.R. Carter and W.E. Caler: J. Orthop. Res. Vol. 3 (1985), pp.84-90.

Google Scholar

[20] R.K. Nalla, J.J. Kruzic, J.H. Kinney and R.O. Ritchie: Biomaterials Vol. 26 (2005), p.21832195.

Google Scholar

[21] R.K. Nalla, J.S. Sölken, J.H. Kinney and R.O. Ritchie: J. Biomech. Vol. 38 (2005), p.15171525.

Google Scholar

[22] R.O. Ritchie, J.H. Kinney, J.J. Kruzic and R.K. Nalla: Fatigue Fract. Engng. Mater. Struct. Vol. 28 (2005), pp.345-371.

Google Scholar

[23] F.J. O'Brien, D. Taylor and C.T. Lee: J. Orthop. Res. Vol. 23 (2005), pp.475-480.

Google Scholar

[24] W.T. George and D. Vashishth: J. Orthop. Res. Vol. 23 (2005), pp.1047-1053.

Google Scholar

[25] F.J. O'Brien, D. Taylor and C.T. Lee: J. Biomech. Vol. 36 (2003), pp.973-980.

Google Scholar