Use of Chitosan as a Material Stabilizer for Acidic Polysaccharides

Article Preview

Abstract:

Chitosan was used in this study to form polyelectrolyte complex (PEC) with water-soluble acidic polysaccharides, including gum arabic and pectin. Porous membranes made of gum arabic or pectin only were quiet fragile. After incorporating with chitosan, the usability of the membranes was greatly improved. The results showed that the gum arabic/chitosan composite membranes had detectable tensile stress and elongation capability. Moreover, the pectin/chitosan composite membranes had significantly improved tensile stress and elongation capability. Both of the two composite membranes had greater water uptake capability than the membranes composed of chitosan only. We have demonstrated that chitosan can function as a material stabilizer to maintain the solid status of the acidic polysaccharides and thus improve the performance of these acidic polysaccharides.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

570-575

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. A. Swenson, Kaustine. Hm, Kaustine. Oa, N. S. Thompson: Journal of Polymer Science Part a-2-Polymer Physics Vol. 6 (1968), pp.1593-1606.

Google Scholar

[2] B. H. Ali, A. Ziada, G. Blunden: Food Chem. Toxicol. Vol. 47 (2009), pp.1-8.

Google Scholar

[3] H. Espinosa-Andrews, J. G. Baez-Gonzalez, F. Cruz-Sosa, E. J. Vernon-Carter: Biomacromolecules Vol. 8 (2007), pp.1313-1318.

DOI: 10.1021/bm0611634

Google Scholar

[4] S. Dumitriu, Polysaccharides: structural diversity and functional versatility, Marcel Dekker, Inc., New York, (1998).

DOI: 10.1016/s0144-8617(98)00141-6

Google Scholar

[5] R. H. Walter, The Chemistry and technology of pectin, Academic Press, San Diego, (1991).

Google Scholar

[6] L. S. Liu, C. K. Liu, M. L. Fishman, K. B. Hicks: J. Agric. Food. Chem. Vol. 55 (2007), pp.2349-2355.

Google Scholar

[7] K. G. Desai: J. Biomater. Appl. Vol. 21 (2007), pp.217-233.

Google Scholar

[8] M. Morra, C. Cassinelli, G. Cascardo, M. D. Nagel, C. Della Volpe, S. Siboni, D. Maniglio, M. Brugnara, G. Ceccone, H. A. Schols, P. Ulvskov: Biomacromolecules Vol. 5 (2004), pp.2094-2104.

DOI: 10.1021/bm049834q

Google Scholar

[9] P. H. Chen, T. Y. Kuo, F. H. Liu, Y. H. Hwang, M. H. Ho, D. M. Wang, J. Y. Lai, H. J. Hsieh: J. Agric. Food. Chem. Vol. 56 (2008), pp.9015-9021.

Google Scholar

[10] F. L. T. Shee, J. Arul, S. Brunet, A. M. Mateescu, L. Bazinet: J. Agric. Food. Chem. Vol. 54 (2006), pp.6760-6764.

DOI: 10.1021/jf060441n

Google Scholar

[11] M. H. Ho, P. Y. Kuo, H. J. Hsieh, T. Y. Hsien, L. T. Hou, J. Y. Lai, D. M. Wang: Biomaterials Vol. 25 (2004), pp.129-138.

Google Scholar

[12] S. V. Madihally, H. W. T. Matthew: Biomaterials Vol. 20 (1999), pp.1133-1142.

Google Scholar

[13] K. M. Kjm, J. H. Son, S. K. Kim, C. L. Weller, M. A. Hanna: J. Food Sci. Vol. 71 (2006), p. E119-E124.

Google Scholar

[14] L. H. Wang, E. Khor, A. Wee, L. Y. Lim: J. Biomed. Mater. Res. Vol. 63 (2002), pp.610-618.

Google Scholar

[15] C. Y. Hsieh, S. P. Tsai, D. M. Wang, Y. N. Chang, H. J. Hsieh: Biomaterials Vol. 26 (2005), pp.5617-5623.

Google Scholar