Effect of Quenching and Reheating on Isothermal Phase Transformation in Ti-15Nb-10Zr Alloy

Article Preview

Abstract:

Isothermal phase transformation in Ti-15Nb-10Zr (at%) alloys has been examined by mainly means of transmission electron microscopy. Specimens solution-treated at 1000°C in  phase field were directly held at temperatures between 350 and 450°C for 1.8-86.4ks, which are called "DH (direct holding)-specimen". On the other hand, some specimens solution-treated at 1000°C were quenched into iced brine and then aged at temperatures between 350 and 450°C, which are called "QA(quench and aging)-specimen". In the DH-specimen held at 400°C α phase formed in β matrix. Microstructure evolution of QA-specimen aged at 400°C, on the other hand, is as follows.  phase formed in β matrix after aging for 1.8ks and further aging led to growth of  phase. After prolonged aging, α phase started to form in β matrix. These experimental results indicate that process of the quenching and reheating promotes the formation of  phase. Specimen quenched into iced brine after solution treatment exhibited α'' phase formation. The α'' phase in the quenched specimen would transform into β phase during reheating to the aging temperature. Reversion process of α''  β phase could promote the formation of  phase in β. Microstructure formation in the DH- and QA-specimens at 350 and 450°C will also be explained.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

582-587

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Semlitsch, F. Staub, H. Webber: Biomed. Tech. 30(1985) 334-339.

Google Scholar

[2] Y. Okazaki, Y. Ito, T. Tateishi and A. Ito: J Japan Inst. Metals 59(1995) 108-115.

Google Scholar

[3] H. Kawahara: Bull. J. Inst. Met. 31(1992), 1033-1039.

Google Scholar

[4] M. Geetha, A. K. Singh, K. Muraleedharan, A. K. Gogia and R. Asokamani: J. Alloys Comp. 329(2001) 264-271.

DOI: 10.1016/s0925-8388(01)01604-8

Google Scholar

[5] A. R. G. Brown and K. S. Jepson: Mem. Sci. Rev. Metall. 63(1966) 575-584.

Google Scholar

[6] K. S. Jepson, A. R. G. Brown and J. A. Gray: The Science, Technology and Applicatioin of Titanium, R. I. Jaffee and N. E. Promisel, eds., (Pergamon Press, 1970) pp.677-90.

Google Scholar

[7] J. P. Morniroli and M. Gantois: Mem. Sci. Rev. Metall. 70(1973) 831-842.

Google Scholar

[8] T. Ahmed and H. J. Rack: J. Mater. Sci 31(1996) 4267-4276.

Google Scholar

[9] D. L. Moffat and D. C. Larbalestier: Metall. Trans. A 19A(1988) 1677-1686.

Google Scholar

[10] M. Ikeda, S. Komatsu, T. Sugimoto and K. Kamei: J. Japan Inst. Metals 53(1989) 664-671.

Google Scholar

[11] A. R. G. Brown, D. Clark, J. Eastabrook and K. S. Jepson: Nature 210(1964) 914-915.

Google Scholar

[12] A. R. G. Brown and K. S. Jepson: Mem. Sci. Rev. Metall. 63(1966) 575-584.

Google Scholar

[13] J. P. Morniroli and M. Gantois: Mem. Sci. Rev. Metall. 70(1973) 831-842.

Google Scholar

[14] Yu. A. Bagariatskii, G. I. Nosova and T.V. Tagunova: Sov. Phys. Doklady 3(1958) 1014-1018.

Google Scholar

[15] B. A. Hatt and V. G. Rivlin: Br. J. Appl. Phys. 1(1968) 1145-1149.

Google Scholar

[16] D. Pattanayak, B. Obst and U. Wolfsteig: Z. Metall. 72(1981) 481-486.

Google Scholar

[17] R. Davis, H. M. Flower and D. R. F. West: J. Mater Sci 14(1979) 712-722.

Google Scholar

[18] A. K. Singh, C. Ramachandra, M. Tavafoghi and V. Singh: J. Mater. Sci. Lett. 12(1993) 697-699.

Google Scholar

[19] Y. Ohmori, H. Natsui, K. Nakai and H. Ohtsubo: Mater. Trans. JIM 39(1998) 40-48.

Google Scholar

[20] O. M. Ivasishin, N. S. Kosenko and S. V. Shevchenko: J. Physiq. 5(1995) C8 1017-1022.

Google Scholar

[21] D. L. Moffat and D. C. Larbalestier: Metall. Trans. A 19A(1988) 1677-1686.

Google Scholar

[22] D. L. Moffat and D. C. Larbalestier: Metall. Trans. A 19A(1988) 1687-1694.

Google Scholar

[23] S. Kobayashi, H. Inayoshi, K. Nakai and T. Sakamoto: accepted in J. Jpn Soc. Heat Treat. (2009).

Google Scholar

[24] S. Kobayashi, S. Nakagawa, K. Nakai, Y. Ohmori: Mater. Trans. 43(2002) 2956-2963.

Google Scholar

[25] T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak: BI�ARY ALLOY PHASE DIAGRAM 2nd ed., (ASM International, Ohio, 1990) 3502-3503.

Google Scholar

[26] P. Duwez : J. Inst. Met. 80(1951-52) 525-527.

Google Scholar