Control of Polymorphism and Mass-Transfer in Al2O3 Scale on Alumina Forming Alloys

Article Preview

Abstract:

The transformation from metastable polymorphs to stable alpha-Al2O3 in the scale formed on a CoNiCrAlY alloy is accelerated under lower oxygen partial pressure (PO2), where both Al and Cr in the alloy are simultaneously oxidized, resulting in the formation of a dense and monolithic alpha-Al2O3 scale. Under higher PO2, where all components of the alloy are oxidized, the transformation is retarded and (Co,Ni)(Al,Cr)2O4 is also produced. The oxygen permeability in polycrystalline alpha-Al2O3 wafers exposed to steep oxygen potential gradients is evaluated at high temperatures to investigate the complicated mass-transfer phenomena through the scale formed on the alloy. The diffusion of Al and O species, which are responsible for the oxygen permeation along the grain boundaries of Al2O3, is dependent on the formation of an oxygen potential gradients. For Lu-doped Al2O3 polycrystals, it was found that Lu depressed the mobility of oxygen, but did not directly influence the migration of Al.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

888-893

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. K. Tolpygo and D. R. Clarke: Surf. Coat. Technol., Vol. 200 (2005), p.1276.

Google Scholar

[2] I. Spitsberg and K. More: Mater. Sci. Eng. A, Vol. 417 (2006), p.322.

Google Scholar

[3] M. Matsumoto, K. Hayakawa, S. Kitaoka, H. Matsubara, H. Takayama, Y. Kagiya and Y. Sugita: Mater. Sci. Eng. A, Vol. 441 (2006), p.119.

Google Scholar

[4] M. Matsumoto, T. Kato, K. Hayakawa, N. Yamaguchi, S. Kitaoka and H. Matsubara: Surf. Coat. Technol., Vol. 202 (2008), p.2743.

Google Scholar

[5] M. W. Brumm and H. J. Grabike: Corrosion Sci., Vol. 33, No. 11 (1992), p.1677.

Google Scholar

[6] A. Pint, M. Treska and L. W. Hobbs: Oxid. Met., Vol. 47 (1997), p.1.

Google Scholar

[7] X. Peng, D. R. Clarke and F. Wang: Oxid. Met., Vol. 60 (2003), p.225.

Google Scholar

[8] D. R. Clarke: Phys. Stat. Sol., Vol. 166 (1998), p.183.

Google Scholar

[9] A. Odaka, T. Yamaguchi, T. Fujita, S. Taruta and K. Kitajima: J. Mater. Sci., Vol. 43 (2008), p.2713.

Google Scholar

[10] J. A. Nychka and D. R. Clarke: Oxid. Met., Vol. 63 (2005), p.325.

Google Scholar

[11] T. Matsudaira, M. Wada, S. Kitaoka, T. Asai, Y. Miyachi and Y. Kagiya: J. Soc. Mater. Sci., Jpn., Vol. 57 (2008), p.532.

Google Scholar

[12] S. Kitaoka, T. Matsudaira and M. Wada, Metal Trans. (to be published).

Google Scholar

[13] Y. Ikuhara, H. Yoshida and T. Sakuma: Mater. Sci. and Eng., Vol. A319-321 (2001), p.24.

Google Scholar