High Strength Natural Fibers for Improved Polymer Matrix Composites

Article Preview

Abstract:

A statistical evaluation based on the Weibull method was performed to correlate the mechanical properties and the diameter of different lignocellulosic fibers. The sisal, rami and curaua fibers were found to have a hyperbolic correlation between their ultimate strength and diameter. This permitted to select thinner high strength fibers, with over 1000 MPa, as reinforcement for the strongest polymer composites ever fabricated with these fibers. A structural analysis was conducted by electron microscopy to identify the strengthening mechanism for both, the high performance fiber and their improved polymer composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

961-966

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Bledzki and J. Gassan: Prog. Polym. Sci Vol. 24 (1999), p.221.

Google Scholar

[2] D. Nabi Saheb and J.P. Jog: Advances in Polymer Technology Vol. 18 (1999), p.351.

Google Scholar

[3] S. J. Eichhorn, C.A. Baillie, N. Zafeiropoulos, L.Y. Mwakambo, M.P. Ansell and A. Dufresne: J. Mater. Science Vol. 36 (2001), p.2107. (a) (b).

Google Scholar

[4] A.K. Mohanty, M. Misra and L.T. Drzal: J. Polym. Environ. Vol. 10 (2002), p.19.

Google Scholar

[5] P. Wambua, I. Ivens and I. Verpoest: Composites Science and Technology, Vol. 63 (2003), p.1259.

Google Scholar

[6] J. Crocker: Mater. Technol. Vol. 2-3 (2008), p.174.

Google Scholar

[7] R. Zah, R. Hischier and A.L. Leão: J. Cleaner Production, Vol. 15 (2007), p.1032.

Google Scholar

[8] S.N. Monteiro, F.P.D. Lopes, A.S. Ferreira and D.C.O. Nascimento: JOM, Vol. 61 (2009), p.17.

Google Scholar

[9] A.G. Kulkarni, K.G. Satyanarayana, K. Sukumaran and P.K. Rohatgi: J. Mater. Sci. Vol. 16 (1981), p.905.

Google Scholar

[10] A.G. Kulkarni, K.G. Satyanarayana, P.K. Rohatgi and K. Vijayan: J. Mater. Sci. Vol. 18 (1983), p.2290.

Google Scholar

[11] P.S. Murherjee and K.G. Satyanarayana: J. Mater. Sci. Vol. 19 (1984), p.3925.

Google Scholar

[12] P.S. Murherjee and K.G. Satyanarayana: J. Mater. Sci. Vol. 21 (1986), p.51.

Google Scholar

[13] P.S. Murherjee and K.G. Satyanarayana: J. Mater. Sci. Vol. 21 (1986), p.57.

Google Scholar

[14] F. Tomczak, K.G. Satyanarayana and T.H.D. Sydenstricker: Composites: Part A, Vol. 38 (2007), p.2227.

Google Scholar

[15] K.G. Satyanarayana, F. Wypych, J.L. Guimarães, C.S. Amico, T.H.D. Sydenstricker and L.P. Ramos: Met. Mater. Proc., Vol. 17(2005), p.183.

Google Scholar

[16] S.N. Monteiro, R.C.M.P. Aquino, F.P.D. Lopes, E.A. Carvalho and J.R. M d'Almeida, in: Proceedings of the 61 th Congress of the Brazilian Association for Metallurgy and Materials, pub. ABM, July 2006, Rio de Janeiro, Brazil, CD-Rom, pp.1-10.

Google Scholar

[17] W.P. Inácio, S.N. Monteiro and F.P.D. Lopes, in: Proceedings of the 64 th Congress of the Brazilian Association for Metallurgy and Materials, pub. ABM, July 2009, Belo Horizonte, Brazil, CD-Rom, pp.1-9.

Google Scholar

[18] S.N. Monteiro, L.F.L. Santos Jr. and F.M. Margem, in: Proceedings of the Characterization of Minerals, Metals & Materials - TMS Conference, pub. TMS, February 2009, San Francisco, USA, CD-Rom, pp.1-6.

Google Scholar