Regular Structure Formation of Hypermonotectic Al-In Alloys

Article Preview

Abstract:

Since the liquid / liquid separation occurs in hypermonotectic alloys and the liquid / liquid interface agitates mass transfer around solidifying front, it is rather difficult to achieve the aligned-rod structure. The high magnetic filed such as 10T achieved the aligned-rod structure in the Al-10at%In alloys. The in-situ observations of the monotectic solidification in the Al-10at%In alloys were performed using synchrotron radiation X-ray. Coarse and fine In rods coexisted during the unidirectional solidification without magnetic field. The local melt flow induced by the In-rich liquid / Al-rich liquid interface enhanced the mass transfer and consequently the coarse rods could continuously grow. The suppression of the local melt flow of which scale was several 10 m by the high static magnetic field resulted in the aligned-rod structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-136

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Yasuda, I. Ohnaka, S. Fujimoto, A. Sugiyama, Y. Hayashi, M. Yamamoto, A. Tsuchiyama, T. Nakano, K. Uesugi, K. Kishio, Materials Letters, 58 (2004) 911-915.

DOI: 10.1016/j.matlet.2003.07.032

Google Scholar

[2] H. Yasuda, I. Ohnaka, S. Fujimoto, N. Takezawa,A. Tsuchiyama, T. Nakano, K. Uesugi, Scr. Met., 54 (2006) 527-532.

DOI: 10.1016/j.scriptamat.2005.10.059

Google Scholar

[3] H. Yasuda, I. Ohnaka, B.K. Dindaw, N. Takezawa, T. Tamayama, S. Fujimoto, A, Tsuchiyama, T. Nakano, K. Uesugi, Trans. Indian Inst. Met., 58 (2005) 625-630.

Google Scholar

[4] L.M. Angers, R.N. Grugel, A. Hellawell, C.W. Draper, IN-SITU COMPOSITES IV, ed. by F.D. Lemkey, H.E. Cline, M. McLean, Elsevier Science Pub., (1982) , p.205.

Google Scholar

[5] R.N. Grugel, A. Hellawell, Metall. Trans. A, 12(1981)669.

Google Scholar

[6] A. Kamio, S. Kumai, H. tezuka, Mater. Sci. Eng. A, A146(1991)105.

Google Scholar

[7] B.K. Dhindaw, D.M. Stefanescu, A.K. Singh, P.A. Curreri. Metall. Trans., A19 (1988) 2839.

Google Scholar

[8] K.A. Jackson, J.D. Hunt, Trans. Metall. Soc. AIME, 236(1966)1129.

Google Scholar

[9] L. Ratke, S. Diefenbach, Mater. Sci. Eng. R, 15 (1995) 263.

Google Scholar

[10] B. Majumdar, K. Chattopadhyay, Metall. Mater. Trans., 27A (1996) (2053).

Google Scholar

[11] R.H. Mathiesen et al., Phys. Rev. Lett. 83 (1999), 5062.

Google Scholar

[12] R.H. Mathiesen et al., , Metall. Mater. Trans. B, 33B (2002), 613.

Google Scholar

[13] H. Yasuda et al., J. Cryst. Growth, 262(2004), 645.

Google Scholar

[14] B. Li, H.D. Brody and A. Kazimirov, Phys. Rev. E70 (2004) Art. No. 062602.

Google Scholar

[15] R.H. Mathiesen, L. Arnberg, Mater. Sci. Eng. A, 413-414 (2005) 283.

Google Scholar

[16] K. Tokieda, H. Yasuda, I. Ohnaka, Mater. Sci. Eng. A, 262 (1999), 238-245.

Google Scholar

[17] H. Yasuda, I. Ohnaka, B.K. Dhindaw, N. Takezawa, T. Tamayama, S. Fujimoto, A, Tsuchiyama, T. Nakano, K. Uesugi, Trans. Indian Inst. Met., 58 (2005) 625-630.

DOI: 10.4028/www.scientific.net/msf.512.289

Google Scholar

[18] K. Uesugi., Y. Suzuki, N. Yagi, A. Tsuchiyama, T. Nakano, Nucl. Instr. Meth. in Phys. Res., A467-468 (2001) 853.

Google Scholar

[19] S. Goto et al., Nucl. Instr. and Meth. A, 467-468(2001) 682.

Google Scholar

[20] V.E. Cosslett, W.C. Nixon, J. Appl. Phys. 4(1953)616.

Google Scholar

[21] H. Yasuda, I. Ohnaka, B.K. Dhinda, T. Nagira, K. Umetani, K. Uesugi, A. Tsuchiyama, T. Nakano, Indian Inst. Met., 60(2007) 75-78.

Google Scholar

[22] C. Stocker, L. Ratke, J. Crystal Growth, 203 (1999) 582-593.

Google Scholar