Undercooling of Pure Cu and Ge Melts in a Static Magnetic Field

Article Preview

Abstract:

The glass fluxing technique was used to undercool melts of pure Cu and Ge in the presence of a static magnetic field generated by a superconducting magnet. It was found that the mean undercooling of liquid Cu increased with increasing magnetic field, whereas the mean undercooling of liquid Ge did not show any significant changes with increasing magnetic field. Such a difference in the undercooling behavior can be related to the Lorentz force imposed by the magnetic field, which was larger for liquid Cu because of a larger electrical conductivity than that of liquid Ge.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

281-286

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Wilde, J. L. Sebright, J. H. Perepezko, Acta Mater. 54 (2006) 4759-4769.

DOI: 10.1016/j.actamat.2006.06.007

Google Scholar

[2] B. Wei, D. M. Herlach, B. Feuerbacher, F. Sommer, Acta Metall. Mater. 41 (1993) 1801-1809.

Google Scholar

[3] D. M. Herlach, B. Wei, B. Feuerbacher, Microgravity Q. 3 (1993) 173-176.

Google Scholar

[4] A. Asai, Sci. Tech. Adv. Mater. 4 (2003) 455-460.

Google Scholar

[5] P. Gillon, Mater. Sci. Eng. A 287 (2000) 146-152.

Google Scholar

[6] S. Asai, ISIJ Inter. 29 (1989) 981-992.

Google Scholar

[7] H. Yasuda, I. Ohnaka, O. Kawakami, K. Ueno, K. Kishio, ISIJ Inter. 43 (2003) 942-949.

DOI: 10.2355/isijinternational.43.942

Google Scholar

[8] B. A. Legrand, D. Chateigner, R. P. de la Bateie, R. Tournier, J. Magn. Mater. 173 (1997) 20-28.

Google Scholar

[9] Z. Ren, X. Li, Y. Sun, Y. Gao, K. Deng, Y. Zhong, Calphad 30 (2006) 277-285.

Google Scholar

[10] M. Hasegawa, S. Asai, J. Mater. Sci. 27 (1992) 6123-6126.

Google Scholar

[11] V. O. Esin, G. N. Pankin, I. P. Korshunov, A. M. Ryabinkin, Rasplavy (1988) 102-104.

Google Scholar

[12] P. Gillon, Mater. Trans. JIM 41 (2000) 1000-1004.

Google Scholar

[13] H. Yasuda, I. Ohnaka, R. Ishii, S. Fujita, Y. Tamura, ISIJ Inter. 45 (2005) 991-996.

Google Scholar

[14] H. Yasuda, Y. Tamura, T. Nagira, I. Ohnaka, Y. Yokoyama, A. Inoue, Mater. Trans. 46 (2005) 2762-2767.

Google Scholar

[15] J. Gao, Y. K. Zhang, S. Reutzel, D. M. Herlach, J. C. He, Proc. of the 5th Inter. Symp. on Electromagnetic Processing of Materials, Sendai, Japan, Oct. 23-27, 2006, pp.363-368.

Google Scholar

[16] C. F. Lau, H. W. Kui, Acta Metall. Mater. 39 (1991) 323-327.

Google Scholar

[17] D. Li, K. Eckler, D. M. Herlach, J. Cryst. Growth. 160 (1996) 59-65.

Google Scholar

[18] S. E. Battersby, R. F. Cochrane, A. M. Mullis, Mater. Sci. Eng. A 226-228 (1997) 443-447.

Google Scholar