Microwave-Assisted Synthesis of Antimony Oxide Nanostructures and their Electrochemical Properties

Article Preview

Abstract:

A few antimony oxide-based nanostructures were successfully synthesized by a fast microwave irradiation method including orthorhombic Sb2O3 and Sb8O11Cl2 nanorods bundles, sheet-like orthorhombic and cubic Sb2O3 materials, pure orthorhombic Sb2O3 nanorod bundles. All these Sb-based nanostructures were characterized by XRD, SEM and TEM. It was found that precipitator agents and irradiation conditions played important roles in the formation of Sb2O3 based nanostructures. The electrochemical properties of Sb2O3 nanorod-bundles were also preliminarily investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-162

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Matsuzawa, T. Shido, Y. Iwasawa: Langmuir Vol. 19 (2003), p.2756.

Google Scholar

[2] N. Chand, S. Verma: J. Fire. Sci. Vol. 9 (1991), p.251.

Google Scholar

[3] P.W. Haycock, G.A. Horley, K.C. Molloy, C.P. Myers, S.A. Rushworth, L.M. Smith: J. Phys. IV Vol. 11 (2001), p.1045.

Google Scholar

[4] H. Li, X.J. Huang, L.Q. Chen: Solid State Ionics Vol. 123 (1999), 189.

Google Scholar

[5] M.Z. Xue, Z.W. Fu: Electrochem. Commun. Vol. 8 (2006), p.1250.

Google Scholar

[6] H. Bryngelsson H, J. Eskhult, K. Edstrom, L. Nyholm: Electrochim. Acta Vol. 53 (2007), p.1062.

Google Scholar

[7] H. Bryngelsson, J. Eskhult, L. Nyholm, M. Herranen, O. Alm, K. Edstrom: Chem. Mater. Vol. 19 (2007), p.1170.

Google Scholar

[8] Y. X Zhang, G.H. Li, L.D. Zhang: Chem. Lett. Vol. 33 (2004), p.334.

Google Scholar

[9] L. Guo, Z.H. Wu, T. Liu, W.D. Wang, H, S, Zhu: Chem. Phys. Lett. Vol. 318 (2000), p.49.

Google Scholar

[10] Z.T. Deng, F.Q. Tang, D. Chen, X.W. Meng, L. Cao, B.S. Zou: J. Phys. Chem. B Vol. 110 (2006), p.18225.

Google Scholar

[11] B.J. Li, Y.B. Zhao, X.M. Xu, C.L. Zhang, Z.S. Wu, Z.J. Zhang: Chem. Lett. Vol. 35, (2006), p.1026.

Google Scholar

[12] G.P. Ren, C.R. Wang, J.N. Xia, J. Liu, H.J. Zhong: Mater. Lett. Vol. 63 (2009), p.605.

Google Scholar

[13] K.J. Rao, B. Vaidhyanathan, M. Ganguli, P.A. Ramakrishnan: Chem. Mater. Vol. 11 (1999), p.882.

Google Scholar

[14] Y. Wang, J.Y. Lee: J. Power Sources Vol. 144 (2005), p.220.

Google Scholar

[15] V. Subramanian, W.W. Burke, H.W. Zhu, B. Q Wei: J. Phys. Chem. C Vol. 112 (2008), p.4550.

Google Scholar

[16] L.P. Xu, Y.S. Ding, C.H. Chen, L.L. Zhao, C. Rimkus, R. Joesten, S.L. Suib: Chem. Mater. Vol. 20 (2008), p.308.

Google Scholar

[17] S. Cho, S.H. Jung, K.H. Lee: J. Phys. Chem. C Vol. 112 (2008), p.12769.

Google Scholar

[18] J.J. Tang, Y. Wang, Z. Jiao, M. Wu: Mater. Lett. Vol. 63 (2009) p.1481.

Google Scholar

[19] Y. Wang, J.Y. Lee: Electrochem. Commun. Vol. 5 (2003), p.292.

Google Scholar

[20] Z.T. Deng, D. Chen, F.Q. Tang, X.W. Meng, J. Ren, L. Zhang: J. Phys. Chem. C Vol. 111 (2007), p.5325.

Google Scholar