A Simple Way of Pre-Doping Lithium Ion into Carbon Negative Electrode for Lithium Ion Capacitor

Article Preview

Abstract:

A simple strategy of pre-doping lithium ion into carbon negative electrode for lithium ion capacitor was introduced. In this strategy, a kind of Li-containing compound was added directly into the positive electrode of the lithium ion capacitor (LIC). When the lithium ion capacitor was charging first time, the Li-containing compound releases Li+, and the pre-doping of lithium ion into the negative electrode was performed. Here, we developed a lithium ion capacitor using Meso-carbon microbeads (MCMB)/activated carbon (AC) as the negative and positive electrode materials, respectively and use the lithium iron phosphate (LiFePO4) as the Li-containing compound, which supply the Li+ ions for pre-doping. The results demonstrated that, by adding 20 percent of LiFePO4 into the positive electrode, the efficiency of the capacitor increases from lower than 60% up to higher than 90%, and the capacitor shows good capacitance characteristics and high capacity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-149

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. E. Conway. J. Electrochem. Soc. Vol. 138 (1991), p.1539.

Google Scholar

[2] A. Burke. J. Power Sources Vol. 91 (2000), p.37.

Google Scholar

[3] H. Q. Li, L. Cheng and Y. Y. Xia. Electrochem. Solid-State Lett. Vol. 8 (2005), p. A433.

Google Scholar

[4] K. Naoi, S. Suematsu, M. Hanada, and H. Takenouchi. J. Electrochem. Soc. Vol. 149 (2002), p. A472.

Google Scholar

[5] J. P. Zhang and T. R. Jow. J. Electrochem. Soc. Vol. 142 (1995), p. L6.

Google Scholar

[6] A. L. Beliakov and A. M. Brintsev. Development and application of combined capacitors: double electric layer - pseudocapacity. Proceedings of the 7th International Seminar on Double-layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, Florida, December (1997).

Google Scholar

[7] W. G. Pell and B. E. Conway. J. Power Sources Vol. 136 (2004), p.334.

Google Scholar

[8] T. Brousse, M. Toupin and D. Bélanger. J. Electrochem. Soc. Vol. 151 (2004), p. A614.

Google Scholar

[9] V. Khomenko, E. Raymundo-Piñero and F. Béguin. J. Power Sources Vol. 153 (2006), p.183.

Google Scholar

[10] A. D. Fabio, A. Giorgi, M. Mastragostino, and F. Soavi. J. Electrochem. Soc. Vol. 148 (2001), p. A845.

DOI: 10.1149/1.1380254

Google Scholar

[11] V. Khomenko, E. Raymundo-Piñero, E. Frackowiak and F. Beguin. Appl. Phys. A Vol. 82 (2006), p.567.

Google Scholar

[12] G. G. Amatucci, F. Badway, A. D. Pasquier and T. Zheng. J. Electrochem. Soc. Vol. 148 (2001), p. A930.

DOI: 10.1149/1.1383553

Google Scholar

[13] A. D. Pasquier, I. Plitz, J. Gural, S. Menocal and G.G. Amatucci. J. Power Sources Vol. 113 (2003), p.62.

DOI: 10.1016/s0378-7753(02)00491-3

Google Scholar

[14] T. Morimoto, M. Tsushima, Y. Che. Hybrid capacitors using organic electrolytes. Electrochemical capacitor and hybrid power sources proceedings of the international symposium. Pennington, NJ: Electrochemical society, (2002).

DOI: 10.5229/jkes.2003.6.3.174

Google Scholar

[15] O. Hatozaki. Lithium ion capacitor. Proceedings of the 16th international seminar on double layer capacitors and hybrid energy storage devices, Deerfield Beach, Florida, USA, December (2006).

Google Scholar

[16] T. Aida, I. Murayama, K. Yamada, M. Morita, and Y. Inoue. J. Power Sources Vol. 166 (2007), p.462.

Google Scholar

[17] V. Khomenko, E. Raymundo-Piñero and F. Béguin. J. Power Sources Vol. 177 (2008), p.643.

Google Scholar