Effect of La2O3 Content on Mechanical Properties and Toughened Mechanics of SiC Nanowires Toughened Cw/SiC Composites

Article Preview

Abstract:

In this paper, micrometers long and 20–100nm diameter SiC nanowires had been synthesized in the Cw/SiC composites by annealing treatment. The present work demonstrated that it is possible to fabricate in-situ SiC nanowires toughening Cw/SiC composites. La2O3 had a significant effect on the morphology and distribution of the SiC nanowires in the Cw/SiC composites. The excess lanthanum resulted in the growth of SiC nanowires with an increasing growth rate in the longitudinal direction and a decreasing growth rate in radial direction. The addition of La2O3 would improve the mechanical properties in the room-temperature. The vapor–liquid-solid growth mechanism of the SiC nanowires along <111> direction was proposed. The combination of grain bridging, crack deflection, whisker debonding and SiC nanowires can improve fracture toughness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-125

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. P. Padture. J. Am. Ceram. Soc 77 (1994): 519-523.

Google Scholar

[2] Y. Zhou, H. Tanaka, S. Otani, Y. Bando, J. Am. Ceram. Soc, 82 (1999): 1959-(1964).

Google Scholar

[3] G. D. Zhan, M. Mitomo, H. Tanaka, J. Am. Ceram. Soc, 83(2000): 1369-1374.

Google Scholar

[4] A.M. Morales, C.M. Lieber, Science 279 (1998), 208-211.

Google Scholar

[5] T. Seeger, P. Kohler-Redlich, M. Ruhle. Adv. Mater., 12 (2000), 279-282.

Google Scholar

[6] S. Otoishi, Y. Tange, Bull. Chem. Soc. Jpn 72 (1999), 1607-1613.

Google Scholar

[7] A. Addamiano, J. Cryst. Growth 58 (1982) 617-622.

Google Scholar

[8] R. V. Krishinarao, M.M. Godokhindi. J. Am. Ceram. Soc. 74 (1991) 2869-2873.

Google Scholar

[9] W. Yang, H. Araki, A. kohyama, J. Am. Ceram. Soc. 87 (2004), 733- 735.

Google Scholar

[10] G. Verspui, W. F. Knippenherg, J. Cryst. Growth. 12(1972), 97-105.

Google Scholar

[11] I. A. Salama, N.R. Quick, A. Kar. J. Appl. Phys. 93 (2003), 9275-9279.

Google Scholar

[12] W. Yang et al. Journal of Crystal Growth 264 (2004) 278-283.

Google Scholar

[13] G. Verspui, W. F. Knippenherg, J. Cryst. Growth. 12(1972), 97-105.

Google Scholar

[14] C. C. Tang, Y. Bando, T. Sato, Appl. Phys. Lett. 80(2002), 4641-4649.

Google Scholar

[15] X. T. Zhou, N. Wang, Frederick, C.K. Au. Mater. Sci. Eng. A 286(2000), 119-123.

Google Scholar

[16] H. L. Lai, N.B. Wong, X.T. Zhou, et al. Appl. Phys. Lett 76 (3) (2000), 294-298.

Google Scholar

[17] X. T. Zhou, H.L. Lai, H.Y. Peng, et al. Chem. Phys. Lett. 318 (2000), 58-62.

Google Scholar

[18] J. Wei, K.Z. Li, H.J. Li, Q.G. Fu, L. Zhang, Mater. Chem. Phys. 95 (2006), 140-144.

Google Scholar

[19] K. S. Wenger, D. Cornu, F. Chassagneux, G. Ferro, T. Epicier, P. Miele, Solid State Commun. 124 (2002), 157-161.

DOI: 10.1016/s0038-1098(02)00408-8

Google Scholar