Effects of Barium Substitution on the Structure and Properties of PSZT Piezoelectric Ceramics

Article Preview

Abstract:

Piezoelectric ceramics with appropriate curie temperatures and high dielectric and piezoelectric performances are attractive for formations of ceramic/polymer piezoelectric composites. The PSZT ceramics with compositions of 0.98Pb1.0-xBaxTi0.48Zr0.52O3-0.02PbSbO3 (x=0.14~0.24) have been prepared by a conventional solid reaction process. The ceramic structures are analyzed by X-ray diffraction and the barium substitution leads to structural changes of the tetragonal and rhombohedral phases which constitute the perovskite PSZT ceramics, and lattice distortions. The curie temperature almost linearly decreases from 226 °C to 141 °C corresponding the barium content increases from 0.14 to 0.24 in the ceramics. The dielectric and piezoelectric properties are largely influenced by the barium substitution and when the barium content at vicinity of 0.22, the piezoelectric strain constant d33 exhibits a dramatic change. It is found that as the barium content around 0.22, the PSZT ceramic specimen is characterized with a low curie temperature Tc=156 °C, and satisfied dielectric and piezoelectric properties with the relative dielectric constant εr=5873, dielectric loss factor tanδ=0.0387, piezoelectric strain constant d33=578 pC/N.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-108

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Richard and L. Goujon: Ultrasonics Vol. 40 (2002), p.895.

Google Scholar

[2] A. Agbossou and C. Richard: Comp. Sci. Technol Vol. 63 (2003), p.871.

Google Scholar

[3] H.A. Sodano, G. Park: Mech. Syst. Signal. Process Vol. 18 (2004), p.683.

Google Scholar

[4] A.A. Shaulov, W.A. Smith and R.Y. Ting: Ferroelectrics Vol. 93 (1989), p.177.

Google Scholar

[5] C. Dias, D.K. Das-Gupta and Y. Hinton: Sensors. Actuat. A Vol. 37-38 (1993), p.343.

Google Scholar

[6] S. Sripada, J. Unsworth and M. Krishnamurty: Mat. Res. Bull Vol. 31 (1996), p.731.

Google Scholar

[7] G. Sa-Gong, A. Safari and S. J. Jang: Ferroelectric. Lett Vol. 5 (1986), p.131.

Google Scholar

[8] S. A. Wilson, G. M. Maistros and R. W. Whatmore: J. Phys. D Vol. 38 (2005), p.175.

Google Scholar

[9] G. Rujijanagul, J. Sompruan and A. Chaipanich: Curr. Appl. Phys Vol. 8 (2008), p.359.

Google Scholar

[10] S. T. Lau, K. W. Kwok and F. G. Shin: J. Appl. Phys Vol. 102 (2007), p.044104.

Google Scholar

[11] K. Mizuuchi, A. Morikawa and T. Sugita: J. Appl. Phys Vol. 96 (2004), p.6585.

Google Scholar

[12] H. Ishizuki, I. Shoji and T. Taira: Appl. Phys. Lett Vol. 82 (2003), p.4062.

Google Scholar

[13] D. Viehland and N. Kim: J. Am. Ceram. Soc Vol. 78 (1995), p.2481.

Google Scholar

[14] S. J. Butcher and N. W. Thomas: J. Phys. Chem. Solids Vol. 52 (1991), p.595.

Google Scholar

[15] H. Y. Chen, J. W. Long and Z. Y. Meng: Mater. Sci. Eng. B Vol. 99 (2003), p.433.

Google Scholar

[16] R. S. Nasar, M. Cerqueira and E. Longo: J. Mater. Sci Vol. 34 (1999), p.3659.

Google Scholar

[17] C. A. Randall, N. Kim and J. P. Kucera: J. Am. Ceram. Soc Vol. 81 (1998), p.677.

Google Scholar