Vacancy Phonon Scattering and Thermoelectric Properties in In2Te3–SnTe Compounds

Article Preview

Abstract:

Solid solution formation is a common and effective way to reduce the lattice thermal conductivity for thermoelectric materials because of additional phonon scattering by point defects and grain boundaries. In the present work we prepared In2Te3–SnTe compounds using a mild solidification technique and evaluated their thermoelectric properties in the temperature range from 318705 K. Measurements reveal that the transport properties are strongly dependent on the chemical composition  In2Te3 content, and lattice thermal conductivity significantly reduces above a minimum In2Te3 concentration, which can possibly be explained by an introduction of the vacancy on the indium sublattice and periodical vacancy planes. The highest thermoelectric figure of merit ZT of 0.19 can be achieved at 705 K, and a big improvement of In2Te3 based alloys would be expected if a proper optimization to the chemical compositions and structures were made.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

126-131

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Callaway and H. C. von Baeyer, Phys. Rev. 120 ] P. G. Klemens, Proc. Phys. Soc., London, Sect. A 68 (1955) 1113.

Google Scholar

[3] B. Abeles, Phys. Rev. 131(1963) (1906).

Google Scholar

[4] R.R. Desai, D. Lakshminarayana, P.B. Patel, P.K. Patel, C.J. Panchalt. Mater. Chem. Phys., 94 (2005)308.

Google Scholar

[5] H. v. Wensierski, D. Weitze, V Leute, Solid State Ionics 101-103 (1997) 479.

DOI: 10.1016/s0167-2738(97)84072-6

Google Scholar

[6] K. Kurosaki, H. Matsumoto, A. Charoenphakdee, S. Yamanaka, M. Ishimaru, Y. Hirotsu, Appl. Phys. Lett. 93 (2008) 012101.

DOI: 10.1063/1.2940591

Google Scholar

[7] N. Teraguchi, F. Kato, M. Konagai, K. Takahashi, Y. Nakamura, N. Otsuka, Appl. Phys. Lett. 59 (1991) 567.

Google Scholar

[8] E. Rogacheva, N. Dzyubenko, 2000 IEEE, 18th Inter. Conf. On Thermoelectrics (1999) 226.

Google Scholar

[9] J. Seo, K. Park, D. Lee, C. Lee, Scripta Mater. 38 (1998) 477.

Google Scholar

[10] J.L. Cui, X.L. Liu, H.F. Xue, J. Appl. Phys. 101 (2007) 123713.

Google Scholar

[11] K. Ahn, C.P. Li, C. Uher, M. G. Kanatzidis, Chem. Mater. 2009, 21, 1361.

Google Scholar

[12] Y. Wu, J. Nylén, C. Naseyowma, N. Newman, F. J. Garcia-Garcia, Ulrich Häussermann, Chem. Mater. 2009, 21, 151.

Google Scholar

[13] Č. Drašar, A. Hovorková, P. Lošťák, H. Kong, C. P. Li, C. Uher, J. Appl. Phys. 104 (2008) 023701.

DOI: 10.1063/1.2956608

Google Scholar

[14] M. L. Li, Concise Handbook of Chemical Data (Chemical Engineering, Beijing, 2003), p.9 (in Chinese).

Google Scholar

[15] M.L. Li, in: Chemical Engineering Press, Concise handbook of Chemical Data (in Chinese), Beijing, 2003, p.6.

Google Scholar