[1]
P. Dantzer. Properties of intermetallic compounds suitable for hydrogen storage applications. Mater Sci Eng A, 2002, 313: 329.
Google Scholar
[2]
W. Oelerich, T. Klassen, R. Bormann. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Compd., 2001, 315: 237.
DOI: 10.1016/s0925-8388(00)01284-6
Google Scholar
[3]
A. Borgschulte, U. Bösenberg, G. Barkhordarian, M. Dornheim, R. Bormann . Enhanced hydrogen sorption kinetics of magnesium by destabilized MgH2−δ. Catal Today., 2007, 120: 262~269.
DOI: 10.1016/j.cattod.2006.09.031
Google Scholar
[4]
T. Ichikawa, N. Hanada, S. Isobe H.Y. Leng, H. Fujii. Hydrogen storage properties in Ti catalyzed Li-N-H system. J Alloys Compd., 2005, 404-406: 435.
DOI: 10.1016/j.jallcom.2004.11.110
Google Scholar
[5]
Y.H. Zhang, B.W. Li, H.P. Ren, S.H. Guo. An investigation on the hydrogen storage characteristics of the melt-spun nanocrystalline and amorphous Mg20−xLaxNi10 (x = 0, 2) hydrogen storage alloys. Mater Chem Phys., 2009, 115: 328.
DOI: 10.1016/j.matchemphys.2008.12.024
Google Scholar
[6]
Y. Wu, W. Han, S.X. Zhou, M.V. Lototsky, J.K. Solberg, V.A. Yartys. Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg-10Ni-2Mm alloys. J Alloys Compd., 2008, 466: 176.
DOI: 10.1016/j.jallcom.2007.11.128
Google Scholar
[7]
M. Zhu, W. H. Zhu, Y. Gao, X. Z. Che, J. H. Ahn. The effect of Mg content on microstructure and hydrogen absorption properties of mechanical alloyed MmNi3. 5 (CoAlMn)1. 5-Mg. Mater Sci Eng A, 2000, 286: 130.
DOI: 10.1016/s0921-5093(00)00716-4
Google Scholar
[8]
G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J Alloys Compd., 1999, 292: 247.
DOI: 10.1016/s0925-8388(99)00442-9
Google Scholar
[9]
J.L. Bobet, E. Grigorova, M. Khrussanova, M. Khristov, P. Stefanov, P. Peshev, D. Radev. Hydrogen sorption properties of graphite-modified magnesium nanocomposites prepared by ball-milling. J Alloys Compd., 2004, 366: 298.
DOI: 10.1016/s0925-8388(03)00746-1
Google Scholar
[10]
L. Zaluski, A. Zaluska, J. O. Ström-Olsen. Nanocrystalline metal hydrides. J Alloys Compd., 1997, 253-254: 70.
DOI: 10.1016/s0925-8388(96)02985-4
Google Scholar
[11]
A. Zaluska, L. Zaluski, J. O. Ström-Olsen. Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni. J Alloys Compd., 1999, 289: 197.
DOI: 10.1016/s0166-0462(99)00013-7
Google Scholar
[12]
G. Liang. Synthesis and hydrogen storage properties of Mg-based alloys. J Alloys Compd., 2004, 370: 138.
Google Scholar
[13]
D. Sun, F. Gingl, H. Enoki, D. K. Ross, E. Akiba. Phase components of the sintered Mg-x wt% LaNi5 (x=20-50) composites and their hydrogenation properties. Acta Mater., 2000, 48: 2363.
DOI: 10.1016/s1359-6454(00)00021-5
Google Scholar
[14]
Y. Wu, M.V. Lototsky, J.K. Solberg, V.A. Yartys, W. Han, S.X. Zhou. Microstructure and novel hydrogen storage properties of melt-spun Mg-Ni-Mm alloys. J Alloys Compd., 2009, 447: 263.
DOI: 10.1016/j.jallcom.2008.10.122
Google Scholar
[15]
V. Skripnyuk, E. Buchman, E. Rabkin, Y. Estrin, M. Popov, S. Jorgensen. The effect of equal channel angular pressing on hydrogen storage properties of a eutectic Mg-Ni alloy. J Alloys Compd., 2007, 436: 105.
DOI: 10.1016/j.jallcom.2006.07.030
Google Scholar
[16]
http: /hydpark. ca. sandia. gov/Propertiesframe. html.
Google Scholar