Low Temperature Synthesis of Silicon Nanocrystals Fabricated by PECVD and their Optical Property

Article Preview

Abstract:

Bulk silicon is the material for microelectronics fabrication such as memory device. However, its optical properties are poor due to its indirect band gap. Since the photoluminescence from porous silicon at room temperature was first reported by Canham, silicon nanostructures have attracted considerable interest due to their potential applications in optoelectronic devices such as Si-based LEDs, solar cell. In the present study, the nanocrystalline silicons were synthesized by non-thermal plasma from gas phase. And Nitrogen plasma was applied to reduce the nonraidative recombination center which related to the emission efficiency. To confirm the effect of nitrogen plasma, the compositional, electrical and optical analysis of silicon nanocryatals layer were also investigated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1094-1097

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. T. Canham, Appl. Phys. Lett. 57, pp.1046-1048 (1990).

Google Scholar

[2] R.J. Walters, G.I. Bourianoff, H.A. Atwater, Nat. Mater. 4 143. (2005).

Google Scholar

[3] A. Irrera, D. Pacifici, M. Miritello, G. Franzo, F. Priolo, F. Iacona,D. Sanfilippo, G. Di Stefano, P.G. Fallica, Appl. Phys. Lett. 81 1866. (2002).

DOI: 10.1063/1.1505117

Google Scholar

[4] M. Cazzanelli, D. Navarro-Urrios, F. Riboli, N. Daldosso, L. Pavesi, J. eitmann, .X. Yi, R. Scholz, M. Zacharias, U. Gosele, J. Appl. Phys. 96 3164. (2004).

DOI: 10.1063/1.1781770

Google Scholar

[5] A.G. Cullis, L.T. Canham, Nature 353 (1991) 335.

Google Scholar

[6] M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt,J. Blasing, Appl. Phys. Lett. 80 661. (2002).

Google Scholar

[7] K.S. Cho, N. -M. Park, T. -Y. Kim, K. -H. Kim, G.Y. Sung, J.H. Shin, Appl. Phys. Lett. 86 071909 (2005).

Google Scholar

[8] J.S. Biteen, N.S. Lewis, H.A. Atwater, A. Polman, Appl. Phys. Lett. 84 5389. (2004).

Google Scholar

[9] K.A. Littau, P.J. Szajowski, A.J. Muller, A.R. Kortan, L.E. Brus, J. Phys. Chem. 97 1224. (1993).

Google Scholar

[10] P.E. Batson, J.R. Heath, Phys. Rev. Lett. 71 911(1993).

Google Scholar

[11] Uwe Kortshagen, Lorenzo Mangolini and Ameya Bapat J. of Nanoparticle Research 9: 39-52 (2007).

Google Scholar

[12] V.A. Schweigert, I.V. Schweigert, J. Phys. D: Appl. Phys. 29 655 (1996).

Google Scholar

[13] U. Kortshagen, U. Bhandarkar, Phys. Rev. E 60 887 (1999).

Google Scholar

[14] P. Pellegrino et al., Physica E, 16, pp.424-428 (2003).

Google Scholar

[15] S. Hasegawa et al., J. Appl. Phys. 89, pp.2598-2605 (2001).

Google Scholar