The Effect of Oxygen on the Brittle-to-Ductile Transition in Silicon Single Crystals

Article Preview

Abstract:

The brittle-to-ductile transition (BDT) in Czochralski (CZ) grown silicon single crystals and floating-zone (FZ) grown silicon single crystals was investigated by three-point bending. The temperature dependence of the apparent fracture toughness was measured in three different cross-head speeds. It was found that the BDT temperature in the CZ silicon crystal was higher than that in FZ silicon crystal, suggesting that the solute oxygen decreases dislocation mobility. However, the activation energies obtained from the strain rate dependence of the BDT temperatures were nearly the same in both the CZ and FZ silicon crystals, indicating that the dislocation mobility is not influenced by the solute oxygen. In this paper, the origin of the difference in the BDT temperature is discussed, focusing the role of the solute oxygen on the dislocation glide.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1299-1302

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. St. John: Phil. Mag. Vol. 32 (1972), p.1193.

Google Scholar

[2] J. Samuels and S. G. Roberts: Proc. R. Soc. Lond. A Vol. 421 (1989), p.1.

Google Scholar

[3] F. C. Serbena and S. G. Roberts: Acta Metall. Mater. Vol. 42 (1994) p.2505.

Google Scholar

[4] H. S. Kim and S. G. Roberts: J. Am. Ceram. Soc. Vol. 77 (1994) p.3099.

Google Scholar

[5] A. Giannattasio and S. G. Roberts: Philos. Mag. Vol. 87 (2007) p.2589.

Google Scholar

[6] T. D. Joseph, M. Tanaka, A. J. Wilkinson and S. G. Roberts: J. Nucl. Mater. Vol. 367 (2007) p.637.

Google Scholar

[7] M. Tanaka, E. Tarleton and S. G. Roberts: Acta Mater. Vol. 56 (2008) p.5123.

Google Scholar

[8] M. Tanaka, A. J. Wilinson and S. G. Roberts: J. Nucl. Mater. Vol. 378 (2008) p.305.

Google Scholar

[9] M. Imai, K. Sumino: Phil. Mag. A Vol. 47 (1983) p.599.

Google Scholar

[10] I. Yonenaga: Mater. Sci. Eng. B Vol. 124-125 (2005) p.293.

Google Scholar

[11] I. Yonenaga: Mater. Sci. Semicond. Process. Vol. 6 (2003) p.355.

Google Scholar

[12] Y. -J. Hong, M. Tanaka and K. Higashida: Mater. Trans. JIM. Vol. 50 (2009) p.2177.

Google Scholar

[13] H. Hirata and K Hoshikawa: Japanese association crystal growth, Vol. 15 (1988) p.207.

Google Scholar

[14] I. Yonenaga and K. Sumino: J. Appl. Phys. Vol. 80 (1996) p.734.

Google Scholar

[15] I. Yonenaga, T. Taishi, X. Huang and K. Hoshikawa: Appl. Phys. Vol. 89 (2001) p.5788.

Google Scholar

[16] G. T. Hahn and A. R. Rosenfield: Acta Matall, Vol. 13 (1965) p.293.

Google Scholar

[17] X. H. Zeng and A. Hartmaier: Acta Mater. Vol. 58 (2010) p.301.

Google Scholar