First-Principles Calculation of Water Molecules with Adsorbed Ions on the Fe(001) Surface

Article Preview

Abstract:

The behavior of water molecules with sulfate on the Fe(001) surface has been investigated using a first-principles method based on density-functional theory (DFT) with numerical atomic orbitals as basis functions for the description of valence electrons and nonlocal pseudopotentials for the atomic core. We present results for the adsorption structure and the bonding nature as caused by the adsorption-induced variations in the electron density and the projected density of states. We have found that the structure of absorbed sulfate depends on the coverage of water molecule on the surface. Analysis of electrostatic potential at an aqueous metal interface provides an appropriate framework to understand complicated potential structures. The mechanism of proton transfer through dissociative adsorption and hydrogen bonding of water molecules has been obtained from calculated results.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1662-1665

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Henderson: Surf. Sci. Rep. Vol. 46 (2002), p.5.

Google Scholar

[2] A. Hodgson and S. Haq: Surf. Sci. Rep. Vol. 64 (2009), p.381.

Google Scholar

[3] T. Kumagai, M. Kaizu, S. Hatta, H. Okuyama, T. Aruga, I. Hamada, Y. Morikawa: Phys. Rev. Lett. Vol. 100 (2008), p.166101.

DOI: 10.1103/physrevlett.100.166101

Google Scholar

[4] T. Schiros, S. Haq, H. Ogasawara, O. Takahashi, H. Ostrom, K. Andersson, L.G.M. Petterson, A. Hodgson, and A. Nilsson: Chem. Phys. Lett. Vol. 429 (2006), p.415.

Google Scholar

[5] M. Ito and M. Yamazaki: Phys. Chem. Chem. Phys. Vol. 8 (2006), p.3623.

Google Scholar

[6] J.W. Halley and D. Price: Phys. Rev. B Vol. 35 (1986), p.9095.

Google Scholar

[7] S. Izvekov and G.A. Voth: J. Chem. Phys. Vol. 115 (2001), p.7196.

Google Scholar

[8] C.D. Taylor, S.A. Wasileski, J-S. Filhol and M. Neurock: Phys. Rev. B Vol. 73 (2006), p.165402.

Google Scholar

[9] M. Otani, I. Hamada, O. Sugino, Y. Morikawa, Y. Okamoto and T. Ikeshoji: J. Phys. Soc. Jpn. Vol. 77 (2008), p.024802.

DOI: 10.1143/jpsj.77.024802

Google Scholar

[10] http: /www. icmab. es/siesta.

Google Scholar

[11] N. Troullier and J.L. Martins: Phys. Rev. B Vol. 43 (1991), p. (1993).

Google Scholar

[12] J.P. Perdew, K. Burke and M. Ernzehof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[13] H. J. Monkhorst and J. D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[14] S. Nose: J. Chem. Phys. Vol. 81 (1984), p.511.

Google Scholar

[15] E.M. Patrito, P.P. Olivera and H. Sellers: Surf. Sci. Vol. 380 (1997), p.264.

Google Scholar