First-Principles Investigation of the Electronic Structure and Magnetic Properties for Co-Doped Fe3O4

Article Preview

Abstract:

The electronic structure and magnetic properties of the (Co1-xFex)Tet(CoxFe2-x)OctO4 spinels (x is defined as the degree of inversion) scenario are investigated theoretically from first-principles, using generalized gradient approximation (GGA) method for the systems with strong coulomb correlations, which gives a correct description of the electronic structure. The GGA+U method gives an improved qualitative result compared with the GGA not only for the excited-state properties such as energy gaps but also for the ground-state properties such as magnetic moments and crystal parameters. The nominal valence of the transition metal elements and the ground state structure have been established based on the study of variation of the cation distribution (x=0.0, 0.25, 0.5, 0.75 and 1.0) over the tetrahedral and octahedral sites. The site-preference calculation on bulk systems indicates that Co2+ ions strongly prefer the octahedral B sites, and the electronic structure and magnetic properties of cobalt ferrites highly depend on the cation distributions even though the chemical composition of the compound does not change. The results are in good agreement with the available experimental data and most of the other theoretical results.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1678-1681

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.A.M. Brabers, Handbook of Magnetic Materials (1997), Vol. 8.

Google Scholar

[2] Y. Chen, J.E. Snyder, C.R. Schwichtenberg, K.W. Dennis, R.W. McCallum and D.C. Jiles, IEEE Trans. Magn. 35 (1999), p.3652.

DOI: 10.1109/20.800620

Google Scholar

[3] A. Lisfi and C.M. Williams, J. Appl. Phys. 93(2003), p.8143.

Google Scholar

[4] H.T. Jeng and G.Y. Guo, J. Magn. Magn. Mater. 239(2002), p.88.

Google Scholar

[5] I.B. Bersuker, John Wiley & Sons: New York (1996).

Google Scholar

[6] R. Burns, Mineralogical applications of crystal field theory; Cambridge University Press: Cambridge (1993) Vol. 5.

Google Scholar

[7] R.J. Borg and G.J. Dienes, The physical chemistry of solids; Academic Press: San Diego (1992).

Google Scholar

[8] J.G. Na, T.D. Lee and S.J. Park, J. Mater. Sci. 27 (1993), p.961.

Google Scholar

[9] T.A.S. Ferreira, J.C. Waerenborgh, M.H.R.M. Mendonçaa, M.R. Nunes and F.M. Costa, Solid State Sciences 5(2003), p.383.

Google Scholar

[10] G.A. Sawatzky, F. van der Woude, A.H. Morrish, Phys Rev 187(1969), p.747.

Google Scholar

[11] G.A. Sawatzky, F. van der Woude and A.H. Morrish, J. Appl. Phys. 39(1968), p.1204.

Google Scholar

[12] M. Pénicaud, B. Siberchicot, C.B. Sommers and J. Kübler, J. Magn. Magn. Mater. 103(1992), p.212.

Google Scholar

[13] V.N. Antonov, B.N. Harmon and A.N. Yaresko, Phys Rev B 67 (2003), p.024417.

Google Scholar

[14] Z. Szotek, W.M. Temmerman, D. Ködderitzsch, A. Svane, L. Petit and H. Winter, Phys. Rev. B 74 (2006), p.174431.

Google Scholar

[15] R. Wyckoff, Crystal structures, 2nd ed.; Wiley-Interscience: New York (1964).

Google Scholar

[16] L. Gracia, A. Beltran, J. Andrés, R. Franco and J.M. Recio, Phys. Rev. B 66(2002), p.224114.

Google Scholar

[17] G. Kresse and J. Furthmüller, Phys. Rev. B 54(1996), p.11169.

Google Scholar

[18] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6(1996), p.15.

Google Scholar

[19] J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77(1996), p.3865.

Google Scholar

[20] P.E. Blöchl, Phys Rev B 50(1994), p.17953.

Google Scholar

[21] G. Kresse and D. Joubert, Phys Rev B 59(1999), p.1759.

Google Scholar

[22] Chao Liu, Bingsuo Zou and AdamJ. Rondinone etal., J. Am. Chem. Soc. 122(2000), p.6263.

Google Scholar