Solid-State Reaction Synthesis and Mechanism of Lithium Silicates

Article Preview

Abstract:

Lithium-based ceramics have been recognized as promising tritium breeding-materials for D-T fusion reactor blankets. Lithium silicates, Li4SiO4 and Li2SiO3, are recommended by many ITER research teams as the first selection for the solid tritium breeder. The solid-state reaction method is the most important way to synthesize lithium silicates. In present study, the processes of solid-sate reaction between amorphous silica and Li2CO3 powders was investigaed by TGA/DSC; the lithium silicate powders were synthesized at 700~900°C with different Li:Si molar ratio using solid-state reaction method. The optimized synthesis temperature and the solid-state reaction mechanism were derived on the base of experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

2006-2009

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Klix, Y. Verzilov, K. Ochiai, et al.: Fusion Eng. Des. Vol. 72 (2005), p.327.

Google Scholar

[2] C.E. Johnson, K. Noda, N. Roux: J. Nucl. Mater. Vol. 263 (1998), p.140.

Google Scholar

[3] C.E. Johnson: J. Nucl. Mater. Vol. 270 (1999), p.212.

Google Scholar

[4] M. Taddia, P. Modesti, A. Albertazzi: J. Nucl. Mater. Vol. 336 (2005), p.173.

Google Scholar

[5] C. Alvani, S. Casadio, V. Contini, et al.: J. Nucl. Mater. Vol. 307 (2002), p.837.

Google Scholar

[6] H. Pfeiffer, K.M. Knowles: J. Eur. Ceram. Soc. Vol. 24 (2004), p.2433.

Google Scholar

[7] N. Roux, C. Johnson, K. Noda: J. Nucl. Mater. Vol. 191~194 (1992), p.15.

Google Scholar

[8] H. Pfeiffer, P. Bosch, S. Bulbulian: J. Nucl. Mater. Vol. 257 (1998), p.309.

Google Scholar

[9] A.R. Raffray, M.C. Billone,G. Federici, etal.: Fusion Eng. Des. Vol. 28 (1995), p.240.

Google Scholar

[10] C.E. Johnson, K.R. Kummerer, E. Roth: J. Nucl. Mater. Vol. 155-157 (1988), p.188.

Google Scholar

[11] D. Vollath, H. Wedemeyer, E. Gunther: J. Nucl. Mater. Vol. 133&134 (1985), p.221.

Google Scholar

[12] L.C. Klein: Solid State Ionics Vol. 32&33 (1988), p.639.

Google Scholar

[13] P. Li, B.A. Ferguson, L.F. Francis: J. Mater. Sci. Vol. 30 (1995), p.4076.

Google Scholar

[14] M.A. Valenzuela, J.J. Becerril, P. Bosch, et al.: J. Am. Ceram. Soc. Vol. 79 (1996), p.455.

Google Scholar

[15] L.C. Klein, C. Yu, R. Woodman, et al.: Catal. Today Vol. 14 (1992), p.165.

Google Scholar

[16] T. Lopez, P. Bosch, M. Asomoza, et al.: J. Mater. Synth. Process. Vol. 2 (1994), p.99.

Google Scholar

[17] O. Rodrlguez, F. Gonzalez, P. Bosch, et al.: Catal. Today Vol. 14 (1992), p.243.

Google Scholar

[18] D. Cruz, S. Bulbulian: J. Nucl. Mater. Vol. 312 (2003), p.262.

Google Scholar

[19] J.J. Becerril, P. Bosch, S. Bulbulian: J. Nucl. Mater. Vol. 185 (1991), p.304.

Google Scholar

[20] H.P. Klug, L.E. Alexander: X-Ray Diffraction Procedures, (John Wiley, NewYork, London, 1954).

Google Scholar

[21] C. -C. Chang, C.C. Wang, P.N. Kumta: Mater. Des. Vol. 22 (2001), p.617.

Google Scholar

[22] A. Skokan, H. Wedemeyer, D. Vollath, et al.: Proceedings of the 14 th Symposium on Fusion Technology, Pergamon, A vignon, 1986, p.1255.

Google Scholar

[23] K. Hesse: Acta Crystallogr. B. Vol. 33 (1977), p.901.

Google Scholar

[24] C.H. Lu, L. Wei-Cheng: J. Mater. Chem. Vol. 10 (2000), p.1403.

Google Scholar

[25] K. Essaki, K. Nakagawa, M. Kato, H. Uemoto: J. Chem. Eng. Jpn. Vol. 37 (2004), p.772.

Google Scholar

[26] D. Cruz, S. Bulbuliana, E. Limac, et al.: J. Solid State Chem. Vol. 179 (2006), p.909.

Google Scholar