Shape-Controlled Syntheses of Silver Nanoparticles: Role of the Seeds

Article Preview

Abstract:

Precious metallic nanoparticles have attracted considerable attention because of their unique properties (optical, electronic, and chemical properties) and potential applications in many areas such as optical probes, biochemical sensors, and surface enhanced Raman Spectrum. Despite many successes in synthesis of anisotropic nanoparticles (rods, plates), some limitations still exist in generating monodispersed silver nanoparticles. This study intends to elucidate the influence of crystalline seeds on the shape, size, and size distribution of nanoparticles through a seed-mediated method. The crystalline seeds can be modified by using different ways, such as heating treatment and oxidative etching. The shape and size of the generated particles will be characterized by TEM, and the particle formation and growth is tracked by UV-vis spectrometry. The findings would be useful for the shape-controlled synthesis of metal nanoparticles for desired functional properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

2402-2405

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Claire M. cobley, S.E.S., Dean J. Campbell, Younan Xia, Plasmonics Vol. 4. (2009), p.171.

Google Scholar

[2] Yumeng You, N.A.P., Hailong Hu, Johnson Kasim, Huanping Yang, Chaoling Du, Ting Yu, Zexiang Shen, J. Raman Spectrosc. Vol. 2009).

Google Scholar

[3] X. C. Jiang, A.B.Y., Langumuir Vol. 24. (2008), p.4300.

Google Scholar

[4] Yugang Sun, Y.X., Science Vol. 298. (2002), p.2176.

Google Scholar

[5] Yugang Sun, Y.X., Adv. Mater. Vol. 14. (2002), p.833.

Google Scholar

[6] Xiaoming Sun, Y.L., Adv. Mater. Vol. 17. (2005), p.2626.

Google Scholar

[7] Dabin Yu, V.W. -w.Y., J. AM. CHEM. SOC. Vol. 126. (2004), p.13200.

Google Scholar

[8] Catherine J. Murphy, N.R.J., Adv. Mater. Vol. 14. (2002), p.80.

Google Scholar

[9] Matthew McEachran, V.K., Chem. Commun. Vol. 2008), p.5735.

Google Scholar

[10] K. K. Caswell, C.M.B., and Catherine J. Murphy, Nano Lett. Vol. 3. (2003), p.667.

Google Scholar

[11] X. C. Jiang, Q.H.Z., A. B. Yu, Nanotechnology Vol. 17. (2006), p.4929.

Google Scholar

[12] SUSAN E. HABAS, H.L., VELIMIR RADMILOVIC, GABOR A. SOMORJAI , PEIDONG YANG, nature materials Vol. 6. (2007), p.692.

Google Scholar

[13] BENJAMIn WILEY, Y.S., YOUNAN XIA, Acc. chem. res. Vol. 40. (2007), p.1067.

Google Scholar

[14] Jose Luis Elechiguerra, J.R. -G., Miguel Jose Yacaman, J. Mater. Chem. Vol. 16. (2006), p.3906.

Google Scholar

[15] Benjamin Wiley, T.H., Yugang Sun, younan Xia, Nano Lett. Vol. 4. (2004), p.1733.

Google Scholar

[16] Kwonho Jang, S. y. k., kang hyun park, eunjoo jang, shinae jun, Seung Uk son, Chem. Commun. Vol. 2007), p.4474.

Google Scholar

[17] Weijia Zhang, Y. l., ronggen Cao, Zhenhua Li, Yahong Zhang, Yi tang, Kangnian Fan, J. AM. CHEM. SOC. Vol. 130. (2008), p.15581.

Google Scholar

[18] X. C. Jiang, Q.H.Z., A. B. Yu, Langumuir Vol. 23. (2007), p.2218.

Google Scholar

[19] Q. H. Zeng, X.C.J., A. B. Yu and G. Q. Lu, Nanotechnology Vol. 18. (2007), p.035708.

Google Scholar

[20] X. C. Jiang, A.B.Y., Langumuir Vol. 24. (2008), p.4300.

Google Scholar

[21] X. C. Jiang, C.Y.C., W. M. Chen, A. B. Yu, Langmuir Vol. 2009).

Google Scholar

[22] H. Hofmeister, M.D., G. L. Tan, K. D. Schicke, phys. Stat. Sol. A Vol. 202. (2005), p.2321.

Google Scholar

[23] Benjamin J. Wiley, Y.X., Zhi-yuan Li, Yadong Yin, and Younan Xia, Nano Lett. Vol. 6. (2006), p.765.

Google Scholar

[24] Younan Xia, Y.X., Byungkwon Lim, Sara E. Sdrabalak, Angew. Chem. Int. Ed. Vol. 48. (2009), p.60.

Google Scholar

[25] Marks, P.M.A. a.L.D., Phys. rev. Lett. Vol. 60. (1988), p.585.

Google Scholar