Alloying Behavior of Ni3Nb, Ni3V and Ni3Ti Compounds

Article Preview

Abstract:

The site preference of ternary additions in Ni3X-type GCP compounds was determined from the direction of solubility lobe of the GCP phase on the experimentally reported ternary phase diagrams. In Ni3Nb (D0a), Co and Cu preferred the substitution for Ni-site, Ti, V and W the substitution for Nb-site, and Fe the substitution for both sites. In Ni3V (D022), Co preferred the substitution for Ni-site, Cr the substitution for both sites, and Ti the substitution for V-site. In Ni3Ti (D024), Fe, Co, Cu, and Si preferred the substitution for Ni-site, Nb, Mo and V the substitution for Ti-site. The thermodynamic model, which was based on the change in total bonding energy of the host compound by a small addition of ternary solute, was applied to predict the site preference of ternary additions. The bond energy of each nearest neighbor pair used in the thermodynamic calculation was derived from the heat of compound formation by Miedema’s formula. The agreement between the thermodynamic model and the result of the literature search was excellent. Both transition and B-subgroup elements have two possibilities, i.e., the case of substitution for Ni-site or the case for X-site, depending on the relative value of two interaction energies.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

440-443

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.H.N. Van Vucht: J. Less-common Met. Vol. 11 (1966), p.308.

Google Scholar

[2] A.K. Sinha: Trans Metall. Soc. AIME Vol. 245 (1969), p.911.

Google Scholar

[3] R.T. Quinn, R. W. Kraft, R.W. Hertzberg: Trans Am Soc., Metals. Vol. 62 (1969), p.38.

Google Scholar

[4] Y. Nunomura, Y. Kaneno, H. Tsuda, T. Takasugi: Intermetallics Vol. 12 (2004), p.389.

Google Scholar

[5] K. Ohira, Y. Kaneno, T. Takasugi: Material Science and Engineering A Vol. 399 (2005), p.332.

Google Scholar

[6] K. Ohira, Y. Kaneno, H. Tsuda, T. Takasugi: Intermetallics Vol. 14 (2006), p.367.

Google Scholar

[7] Y. Nunomura, Y. Kaneno, H. Tsuda, T. Takasugi: Acta Mater. Vol. 54 (2006), p.851.

Google Scholar

[8] S. Shibuya, Y. Kaneno, M. Yoshida, T. Shishido, T. Takasugi: Intermetallics Vol. 15 (2007), p.119.

Google Scholar

[9] S. Shibuya, Y. Kaneno, H. Tsuda, T. Takasugi: Intermetallics Vol. 15 (2007), p.338.

Google Scholar

[10] S. Ochiai, Y. Oya, T. Suzuki: Acta metall Vol. 32 (1984), p.289.

Google Scholar

[11] A.R. Miedema, R. Boom, F.R. de Boer: Crystal Structure and Chemaical Bonding in Inorganic Chemistry, edited by C. J. M. Rooymans and A. Rabenau, North-Holland, American Elsevier (1975).

Google Scholar

[12] A. R. Miedema, P. F. du Chatel: Theory of Alloy Phase Formation, edited by L. H. Bennet, Metall. Soc. A.I.M.E. (1980).

Google Scholar

[13] A.A. Kodentsov, S.F. Dunaev, E.M. Slyusarenko: Moscow Univ. Chem. Bull. (Engl. Transl. ) Vol. 43(3) (1988), p.90.

Google Scholar

[14] V. Raghavan: Phase Diagrams Ternary Iron Alloys, Indian Inst. Met. Vol. 6B (1992), p.1025.

Google Scholar

[15] K.P. Gupta: Phase Diagrams Ternary Nickel Alloys, Indian Inst. Metals Vol. 2 (1991), p.177.

Google Scholar

[16] R. Nino, Y. Terada, C.S. Oh, T. Mohri, T. Suzuki: Phase Equilib. Vol. 20 (1999), p.29.

Google Scholar

[17] A.A. Kodentzov, S.F. Dunaev, E.M. Slusarenko: J. Less-Common Met. Vol. 135 (1987), p.15.

Google Scholar

[18] K.P. Gupta: Phase Diagrams Ternary Nickel Alloys, Indian Inst. Metals Vol. 2 (1991), p.219.

Google Scholar

[19] V.N. Eremenko, L.A. Tret'yachenko, S.B. Prima, E.L. Semenova: Sov. Powder Metall. Met. Ceram. (Engl. Transl. ) Vol. 23 (1984), p.613.

Google Scholar

[20] K.P. Gupta: Phase Diagrams Ternary Nickel Alloys, Indian Inst. Metals Vol. 1 (1990), p.321.

Google Scholar

[21] K.P. Gupta: Phase Diagrams Ternary Nickel Alloys, Indian Inst. Metals (1991), p.219.

Google Scholar