High Temperature Strength of Ir/Ir2Y Two Phase Alloys in the Ir-Pt-Y System

Article Preview

Abstract:

Possibilities of heat resistant alloys based on a C15 Laves phase and an FCC phase have been examined in the Ir-Pt-Y ternary system. Although the Ir solid solution phase (A1) and the Ir2Y phase (C15) are not in equilibrium in the Ir-Y binary system, this equilibrium is attained by small Pt additions to the binary system. High temperature compressive strength of an A1/C15 monovariant eutectic alloy was found to be much lower than that of Ir-15Nb, an Ir based γ/γ' alloy. Low strength of the present alloys is attributed to the absence of effective strengthening mechanisms that operate in the A1 phase; for Y is hardly dissolved within the A1 phase, by which solution hardening and precipitation hardening are not available.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

424-427

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Abe, In: Proc. Int. Workshop on the Innovative Structural Materials for Infrastructure in 21st Century, NIMS, Tsukuba (2000), p.119.

Google Scholar

[2] Y. Toda, H. Tohyama, H. Kushima, K. Kimura, and F. Abe: JSME Int. J. Vol. A48 (2005), p.35.

Google Scholar

[3] M. Igarashi, H. Semba, and H. Okada, In: Proc. 8th Ultra-Steel Workshop, NIMS, Tsukuba (2004), p.194.

Google Scholar

[4] A. Suzuki, N. D. Saddock, J. W. Jones, and T. M. Pollock: Acta Mater. Vol. 53 (2005), p.2823.

Google Scholar

[5] I. A. Anyanwu, Y. Gokan, S. Nozawa, A. Suzuki, S. Kamado, Y. Kojima, S. Takeda, and T. Ishida: Mater. Sci. Eng. Vol. A380 (2004), p.93.

Google Scholar

[6] J. D. Livingston: Phys. Status Solidi. Vol. A131 (1992), p.415.

Google Scholar

[7] M. Takeyama and C. T. Liu: Mater. Sci. Eng. Vol. A132 (1991), p.61.

Google Scholar

[8] P. Villars and K. Cenzual: Pearson's Crystal Data: Crystal Structure Database for Inorganic Compounds (ASM International, Materials Park, Ohio, 2007).

Google Scholar

[9] N. Sekido, H. Murakami, and Y. Yamabe-Mitarai: J. Alloys Compds. Vol. 476 (2009), p.107.

Google Scholar

[10] G. L. Erickson, in: Superalloys-1996, edited by R. D. Kissinger, D. J. Deye, D. L. Anton, and A. D. Cetel, TMS, Warrendale, PA (1996), p.35.

Google Scholar

[11] Y. Yamabe-Mitarai, Y. Ro, T. Maruko, and H. Harada: Metall. Mater. Trans. A Vol. 29 (1998), p.537.

DOI: 10.1007/s11661-998-0135-9

Google Scholar

[12] Y. Yamabe-Mitarai and H. Aoki: Materials Letters Vol. 56 (2002), p.781.

Google Scholar

[13] W. Hume-Rothery and H. M. Powell: Z. Kristallogr. Vol. 91 (1935), p.23.

Google Scholar

[14] W. F. Gale and T. C. Totemeier: Smithells Metals Reference Book 8th Edition (Butterworth -Heinemann, Jordan Hill, Oxford, 2004).

Google Scholar

[15] D. J. Thoma and J. H. Perepezko: J. Alloys Compds. Vol. 224 (1995), p.330.

Google Scholar

[16] J. H. Zhu, C. T. Liu, L. M. Pike, and P. K. Liaw: Metall. Mater. Trans. A Vol. 30 (1999), p.1449.

Google Scholar

[17] F. Stein, M. Palm, and G. Sauthoff: Intermetallics vol. 13 (2005), p.1056.

Google Scholar