Thixomolded® and Thermomechanically Processed Fine-Grained Magnesium Alloys

Article Preview

Abstract:

Thixomolding of Mg alloys produces fine microstructure of about 5-10 micron alpha phase grain size, surrounded by divorced eutectic phases. During the period from 1995 to 2009, this process and microstructure has captured broad applications around the globe - in markets such as electronics (lap-tops, cameras and cell phones), autos, sports and hand tools. Thermomechanical processing has been applied recently to the Thixomolded precursor to further refine the grain size and eutectic phases - providing yield strength above 300 MPa, fatigue strength of 150 MPa along with elongation of 10%. Alloys studied include AM60, AZ61L and thixoblended alloys of higher Zn content. Microstructure is related to processing and properties. Metal/epoxy fiber composites based on this Mg product have demonstrated yield strength of 900 MPa, with E of 90 GPa.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

574-579

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Decker and S. LeBeau, Advanced Materials & Processing 166 (2008) No. 4, pp.28-29.

Google Scholar

[2] T. Nandy, R. Messing, J. Jones, T. Pollock, D. Walukas, and R. Decker, Metall. Mater. Trans. 37A (2006), p.3725.

Google Scholar

[3] M.R. Barnett, Mater. Sci. Eng. A 464 (2007), pp.1-7.

Google Scholar

[4] M.R. Barnett, Mater. Sci. Eng. A 464 (2007), pp.8-16.

Google Scholar

[5] M.R. Barnett and N. Stanford, Scr. Mater. 57(2007), pp.1125-1128.

Google Scholar

[6] A. Jain and S.R. Agnew, Mater. Sci. Eng. A 462 (2007), pp.29-36.

Google Scholar

[7] A. Jain, O. Duygulu, D.W. Brown, C.N. Tome and S.R. Agnew, Mater. Sci. Eng. A 486 (2008), pp.545-555.

Google Scholar

[8] W. Hartt, R. Reed-Hill, Trans. Metall. Soc., AIME, 242 (1968), p.1127.

Google Scholar

[9] M.A. Meyers, O. Vohringer, and V.A. Lubarda, Acta Mater. 49 (2001), pp.4025-4039.

Google Scholar

[10] Q. Yang and A.K. Ghosh, Acta Mater. 54(2006), pp.5147-5158.

Google Scholar

[11] R. Reed-Hill, Metall. Trans. Soc. AIME 218 (1960), p.554.

Google Scholar

[12] M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Acta Mater. 52 (2004), pp.5093-5103.

Google Scholar

[13] M.F. Yoo, Metall. Mater. Trans. A 12 (1981), p.409.

Google Scholar

[14] T. Obara, H. Yoshinga, S, Morozumi, Acta Metall. 21(1973), pp.845-853.

Google Scholar

[15] S.E. Ion, J.F. Humphreys and S.J. White, Acta Metall., 30 (1982), p.1909-(1919).

Google Scholar

[16] J.A. del Valle, M.T. Perez-Prado and O.A. Ruano, Mater. Sci. Eng. A 355 (2003), pp.68-78.

Google Scholar

[17] J.A. del Valle, M.T. Perez-Prado and O.A. Ruano, Metall. Mater Trans. 36A (2005), pp.1427-1438.

Google Scholar

[18] J.A. del Valle and O.A. Ruano, Mater. Sci. Eng. A 487 (2008), pp.473-480.

Google Scholar

[19] A. Vlot & J. Gunnick, Fibre Metal Laminates, Kluwer Academic Publishers, Dordrecht (2001).

Google Scholar