Effect of Bi Addition on Thermal Stability and Tensile Ductility of Mg-3%Zn-0.4%Zr Alloy

Article Preview

Abstract:

Thermal stability of  grains and tensile ductilities at room and elevated temperatures were investigated and compared for Mg-3%Zn-0.4%Zr and Mg-3%Zn-0.4%Zr-1%Bi alloys in hot-rolled state. The Bi-added alloy showed slightly finer-grained microstructure with enhanced thermal stability, which is closely associated with fine Mg-Bi compounds acting as obstacles for the migration of grain boundaries. The Mg-3%Zn-0.4%Zr-1%Bi alloy exhibited better tensile strength at room temperature and tensile ductilities at elevated temperature. Finer and more homogeneous grain structure with higher thermal stability would be responsible for the enhanced tensile properties in the Bi-added alloy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

647-650

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Bussiba, A.B. Artzy, A. Shtechman, S. Ifergan and M. Kupiec: Mater. Sci. Eng. A Vol. A302 (2001), p.56.

Google Scholar

[2] D.L. Yin, K.F. Zhang, G.F. Wang and W.B. Han: Mater. Lett. Vol. 59 (2005), p.1714.

Google Scholar

[3] J.A. del Valle, M.T. Perez-Prado and O.A. Ruano: Mater. Sci. Eng. A Vol. A355 (2003), p.68.

Google Scholar

[4] S.B. Yi, S. Zaefferer and H.G. Brokmeier: Mater. Sci. Eng. A Vol. A424 (2006), p.275.

Google Scholar

[5] Y. Xuyue, H. Miura and T. Sakai: Trans. Nonferrous Met. Soc. China Vol. 17 (2007), p.1139.

Google Scholar

[6] J.K. Solberg, J. Torklep, O. Bauger and H. Gjesland: Mater. Sci. Eng. A Vol. A134 (1991), p.1201.

Google Scholar

[7] W.J. Kim, S.J. Yoo, Z.H. Chen and H.T. Jeong: Scripta Mater. Vol. 60 (2009), p.897.

Google Scholar

[8] W.N. Tang, R.S. Chen and E.H. Han: J. Alloys Comp. Vol. 477 (2009), p.636.

Google Scholar

[9] A. Jager, P. Lukac, V. Gartnerova, J. Bohlen and K.U. Kainer: J. Alloys Comp. Vol. 378 (2004), p.184.

Google Scholar

[10] T. Laser, C.H. Hartig, M.R. Nurnberg, D. Letzig and R. Bormann: Acta Mater. Vol. 56 (2008), p.2791.

Google Scholar

[11] E.J. Guo, B.X. Ma, L.P. Wang: J. Mater. Proc. Tech. Vol. 206 (2008), p.161.

Google Scholar

[12] C.L. Mendis, K. Oh-ishi and K. Hono: Scripta Mater. Vol. 57 (2007), p.485.

Google Scholar

[13] H. Okamoto: Phase Diagrams for Binary Alloys (ASM International, USA 1999).

Google Scholar

[14] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita and T.G. Langdon: Acta Mater. Vol. 50 (2002), p.553.

DOI: 10.1016/s1359-6454(01)00368-8

Google Scholar

[15] S. Lee, M. Furukawa, Z. Horita and T.G. Langdon: Mater. Sci. Eng. A Vol. A342 (2003), p.294.

Google Scholar