Phase Constitution and Heat Treatment Behavior of Ti-7mass% Mn-Al Alloys

Abstract:

Article Preview

Titanium exhibits many attractive properties. It is considered to be ubiquitous since it has the 9th-highest Clarke number of all the elements. However, the principal beta-stabilizing elements for titanium can be very expensive, making many titanium alloys expensive. Manganese is a beta stabilizer for titanium alloys and it is also considered to be ubiquitous since it has the 11th-highest Clarke number of all the elements. The behavior of Ti-Mn alloys during heat treatment has been investigated and it was found that in some alloys the isothermal omega phase is precipitated. Because this phase can lead to brittleness, it is very important to suppress its precipitation. Since it is well-known that aluminum suppresses isothermal omega precipitation, we investigated the effect of adding aluminum using Ti-7mass% Mn-0, 1.5, 3.0 and 4.5mass% Al alloys by performing electrical resistivity, Vickers hardness, and X-ray diffraction measurements. In solution-treated and water-quenched 0 and 1.5 alloys, only beta phase was identified, while hcp martensite and bate phase were identified in 3.0 and 4.5Al alloys. The resistivities at room and liquid-nitrogen temperatures were found to increase monotonically with increasing Al content. Isothermal  precipitation was suppressed by aluminum addition, while alpha precipitation was accelerated by Al addition.

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Main Theme:

Edited by:

Jian-Feng Nie and Allan Morton

Pages:

855-858

DOI:

10.4028/www.scientific.net/MSF.654-656.855

Citation:

M. Ikeda et al., "Phase Constitution and Heat Treatment Behavior of Ti-7mass% Mn-Al Alloys ", Materials Science Forum, Vols. 654-656, pp. 855-858, 2010

Online since:

June 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.