Recent Developments in Mechanisms and the Kinetics of Deformation Twinning in Titanium Alloys

Article Preview

Abstract:

Within the past decade, it has been shown that twinning in α, β, and α + β titanium alloys can occur at speeds much lower than the speed of sound by many orders of magnitude. This is related to the twinning deformation mechanisms controlled by the diffusion of oxygen as compared to simply a shear process. Very recent developments, such as strain-rate effects on twinning, support a recent hypothesis that the twinning in these materials is controlled by a slow diffusion process, resulting in time-dependent twinning. These recent developments, along with the ramifications of the findings will be outlined in this article.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

863-866

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Ramesh and S. Ankem: Proceedings of the 3rd PRICM. (1998).

Google Scholar

[2] J.W. Christian and S. Mahajan: Prog. in Mat. Sci., 1995. 39(1-2): pp.1-157.

Google Scholar

[3] Dieter, G.E., Mechanical Metallurgy. 1988, London: McGraw-Hill Book Co.

Google Scholar

[4] R. Reed-Hill, and R. Abbaschian: Physical Metallurgy Principles. 1992, Boston: PWS-Kent.

Google Scholar

[5] E. Savrun, W.D. Scott, and D.C. Harris, Journal of Mat. Sci. 2001. 36(9): pp.2295-2301.

Google Scholar

[6] M.H. Yoo: Intermetallics, 1998. 6(7-8): pp.597-602.

Google Scholar

[7] M.W. Chen, et al.: Science, 2003. 300(5623): pp.1275-1277.

Google Scholar

[8] L.A. Dorosinskii, et al.: Jetp Letters, 1989. 49(3): pp.182-187.

Google Scholar

[9] L.A. Dorosinskii, et al.: Physica C, 1992. 203(3-4): pp.342-346.

Google Scholar

[10] E.K.H. Salje, et al.: American Mineralogist, 1998. 83(7-8): pp.811-822.

Google Scholar

[11] S. Ankem, C.A. Greene, and S. Singh: Scripta Met. Et Mat., 1994. 30(6): pp.803-808.

Google Scholar

[12] A. Ramesh, and S. Ankem: Met. Trans. A, 2002. 33(4): pp.1137-1144.

Google Scholar

[13] P.G. Oberson, and S. Ankem: Physical Review Letters, 2005. 95(16).

Google Scholar

[14] P.G. Oberson, and S. Ankem: International Journal of Plasticity, 2009. 25(5): pp.881-900.

Google Scholar

[15] Z. Wyatt, and S. Ankem: Unpublished Research. 2010, UMCP, College Park, MD.

Google Scholar

[16] M.A. Meyers, O. Vohringer, and V.A. Lubarda: Acta Mat., 2001. 49(19): pp.4025-4039.

Google Scholar

[17] A.K. Aiyangar, et al.: Met. Trans. A, 2005. 36A(3): pp.637-644.

Google Scholar

[18] L. Capolungo, et al.: Materials Science and Engineering A, 2009. 513-14: pp.42-51.

Google Scholar

[19] D.R. Chichili, D.R., K.T. Ramesh, and K.J. Hemker: Acta Mat., 1998. 46(3): pp.1025-1043.

Google Scholar

[20] I.A. Maksoud, H. Ahmed, and J. Rodel, Mat. Sci. & Eng. A, 2009. 504(1-2): pp.40-48.

Google Scholar

[21] R.J. McCabe, et al.: International Journal of Plasticity, 2009. 25(3): pp.454-472.

Google Scholar

[22] A. A. Salem, et al.: Met. Trans. A. 2006. 37A(1): pp.259-268.

Google Scholar

[23] G.H. Xiao, N.R. Tao, and K. Lu, ScriptaMaterialia, 2008. 59(9): pp.975-978.

Google Scholar

[24] S.G. Song and G.T. Gray, ActaMetallurgicaEtMaterialia, 1995. 43(6): pp.2325-2337.

Google Scholar

[25] S.G. Song and G.T. Gray, ActaMetallurgicaEtMaterialia, 1995. 43(6): pp.2339-2350.

Google Scholar

[26] A.G. Crocker, ActaMetallurgica, 1962. 10(Feb): p.113.

Google Scholar

[27] P.G. Oberson, PhD Thesis. 2006, University of Maryland: College Park, Maryland, USA.

Google Scholar