Fabrication and Microstructure of Fe-Al Intermetallic Compound Powders by Mechanical Alloying

Article Preview

Abstract:

The Fe-Al intermetallic compound powders were fabricated by mechanical alloying and heat treatment process. In this research, the phase composition and microstructure of the Fe-Al intermetallic compound powders produced by different milling time and heat treatment at 800oC and 1000oC were investigated. The XRD patterns results showed that the Fe-Al intermetallic compound powders were fabricated by mechanical alloying for 60h. After heat treatment at 800oC and 1000oC, the Fe-Al intermetallic compound powders transformed into the Fe3Al powders. With the increase of milling time, the mechanical alloying extent of Fe-Al intermetallic compound powders would be increased remarkably, and the particles sizes decreased remarkably. The microstructure showed that the mean particles size of the Fe-Al intermetallic compound powders after milling for 60h was rather fine and about 4-5μm. The microstructures showed that mean particles size of the Fe3Al intermetallic compound powders produced by heat treatment at 800oC and 1000oC was also about 4-5μm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

356-359

Citation:

Online since:

July 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Wolski, C.G. Le and P. Delcroix: Mater. Sci. Eng. A. Vol. 207 (1996), p.97.

Google Scholar

[2] F. Cardellini, V. Contini and R. Gupta: J. Mater. Sci. Vol. 33 (1998), p.2519.

Google Scholar

[3] F. Cardellini, V. Contini and G. Mazzone: J. Mater. Sci. Vol. 31 (1996), p.4175.

Google Scholar

[4] B. Huang, K.N. Ishihara and P.H. Shingu: Mater. Sci. Eng. A. Vol. 231 (1997), p.72.

Google Scholar

[5] X. Amils, J. Nogues and S. Surinach: Intermetallics. Vol. 8 (2000), p.805.

Google Scholar

[6] B.H. Rabin, R.N. Weright: Metal. Trans. A. Vol. 22 (1991), p.277.

Google Scholar

[7] S.M. Zhu, T. Makoto and S. Kazushi: Mater. Sci. Eng. A. Vol. 292 (2000), p.83.

Google Scholar

[8] O. Ikeda, I. Ohnuma and R. Kainuma: Intermetallics. Vol. 9 (2001), p.755.

Google Scholar