Shape Features of 2D Figures

Article Preview

Abstract:

The symmetry-diagram was originally defined for symmetry recognition. As a consequence it has been proven that the symmetry-diagram shows the unique shape property of the two-dimensional (2D) figures. The symmetry-diagram is different in the case of 2D figures having a different shape. It is very sensitive to the smallest change in the shape. The only exception for its applicability is the 2D figure having two or more concentric boundary loops.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

459-466

Citation:

Online since:

September 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Fischmeister H. F. (1974): Shape factors in quantitative microscopy, Zeitschrift für Metallkunde, Vol. 65, 558-562 p.

Google Scholar

[2] Beddow J. K., Vetter A. F., Sissopn K. (1976a): Powder Metallurgy Review, Part I., Particle shape analysis, Powder Metallurgy International, Vol. 8, No. 2, 69-76. p.

Google Scholar

[3] Beddow J. K., Vetter A. F., Sissopn K. (1976b): Powder Metallurgy Review, Part I., Particle shape analysis, Powder Metallurgy International, Vol. 8, No. 3, 107-109 p.

Google Scholar

[4] Underwood E. E. (1976): Quantitative shape parameters for microstructural fetures, The Microscope, Vol. 24, 49-64 p.

Google Scholar

[5] Pavlidis T. (1978): Survey. A review of algorithm for shape analysis, Computer Graphics and Images Processing, Vol. 7, 243-258 p.

Google Scholar

[6] Roósz A., Réti T. (1978): A sztereometrikus metallográfia és mai alkalmazási lehetőségei, Bányászati és Kohászati Lapok, Kohászat, Vol. 111, No. 7, 308-313 p.

Google Scholar

[7] Réti T. (1983): Mikroszkópos részecskék alakjának minősítése, Bányászati és Kohászati Lapok, Kohászat, Vol. 116 No. 12, 549-557 p.

Google Scholar

[8] Exner H. E. (1987): Shape - A key problem in quantifying microstusture, Acta Stereologica, Vol. 6/III, 1023-1028 p.

Google Scholar

[9] Flook A. (1987): The quantitative measurement of particle shape, Acta Stereologica, Vol. 6/III, 1009-1021 p.

Google Scholar

[10] Sonka M., Hlavac V., Boyle R. (1993): Image Processing, Analysis and Machine Vision, Chapman and Hall Computing, London.

Google Scholar

[11] Santolo L. A. (1976): Integral Geometry and Geometric Probability, Addision-Wsley, Reading, Massachusetts.

Google Scholar

[12] Pratt W. K. (1987): Digital Image Processing, John Wiley and Sons, New York, 525-534 p.

Google Scholar

[13] Parker J. R. (1994): Practical Computer Vision Using C, John Wiley and Sons, New York.

Google Scholar

[14] Gácsi Z. (2001): Szereológia és képelemzés, Well-Press Kiadó Kft., 205-232 p.

Google Scholar

[15] Nemes N. J. (1998): A tér a társadalomtudományban, Hirsner Rezső Szociálpolitikai Egyesület Kiadó, Budapest, 143.

Google Scholar

[16] Csepeli ZS., Gácsi Z., Karalik GY., Lőrinczi J., Zsámbok D. (2001): Stereological characterisation of steel wide strip microstructures after normalising and thermomechanical rolling, Anyagok világa. Vol. 2. No 2.

DOI: 10.4028/www.scientific.net/msf.414-415.63

Google Scholar

[17] Zahn C., Roskies R. Z. (1972): Fourier descriptors for plane closed curves, IEEE Trans. Computers, Vol. 21, 269-281 p.

DOI: 10.1109/tc.1972.5008949

Google Scholar

[18] Bennett J. R., Mac Donald, J. S. (1975): On the mesurement of curvature in a quantized environment, IEEE Trasaction on Computers, Vol. 24. 803-819 p.

Google Scholar

[19] Granlund G. H. (1972): Fourier preprocessing for hand print character recognition, IEEE Transaction on computers, Vol. C-21. 195-201p.

DOI: 10.1109/tc.1972.5008926

Google Scholar

[20] Richard C. W., Hemami H. (1974): Identification of the three-dimensional objects Fourier descriptors of the boundary curve, IEEE Trasaction on System, Man, and Cybernetics, Vol. SMC-4. 371-378 p.

DOI: 10.1109/tsmc.1974.5408458

Google Scholar

[21] Persoon E., Fu K S. (1977): Shape discrimination using Fourier Descriptors, IEEE Transaction on System, Man, and Cybernetics, Vol. SMC-7. 170-179 p.

DOI: 10.1109/tsmc.1977.4309681

Google Scholar

[22] Réti T., Czinege I. (1989): Shape characterization of particles via generalized Fourier analysis, Journal of Microscopy, Vol. 156, 15-32 p.

DOI: 10.1111/j.1365-2818.1989.tb02903.x

Google Scholar

[23] Tang X. (1998): Multiple competitive learning network fusion for object classification, IEEE Transactions on System, Man, and Cybernetics Part B, Vol. 28, 532-543 p.

DOI: 10.1109/3477.704292

Google Scholar

[24] Szakal Z., Zsoldos I. (2008): The Symmetry-Diagram as a Tool of the Pattern Recognition, International Journal of Mathematical Models and Methods in Applied Sciences, Issue 4, Volume 2, 523-532 p.

Google Scholar