Comparison of Thermal Analysis, Micro Structural and Compositional of Archeological Indigenous Ceramic (Caninhas Site of Canas - SP) with Actual Clay/Ceramic of Region

Article Preview

Abstract:

The ceramic material found at the archeological site in Caninhas, shows funerary structures of combustion and various objects of Tupi-Guarani indigenous use. These pieces and fragments were saved and cataloged, in approximately 4000 units. The ceramics present a gradient of color, from ochre to dark gray, when from the surface to the center of the piece, indicating compositional variation caused by inefficient sintering carried out by indigenous people. The goal of this study was to observe the phase transition temperature, decomposition, mass variation and reactions that occur in the archeological and nowadays ceramics (by DSC/TG), together with micro structural analysis (by SEM), phase analysis (by XRD) and chemical composition (by EDS). Ceramics nowadays are sintered with air, in a temperature ranging between 400-800 °C for one hour, and presents heterogeneous microstructure. The archeological ceramics were identified by the ilitte, hydrated alumina, lutecite and quartz phase, and the caulinite, lutecite and quartz phase in clay produced today from that region differs in all characteristics and aspects according to time. The interaction between different areas of expertise is fundamental to aggregate knowledge: the use of ceramic material engineering to archeological application.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 660-661)

Pages:

1019-1024

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. T. G. Machado, P. Schneider and F. Schneider: Revista Cerâmica Vol. 54 (2008), p.103.

Google Scholar

[2] G. O. Cardoso, M. I. Prudêncio, A. Zink, M. I. Dias and J. C. Waerenorgh: Determinação da temperatura de cozedura de cerâmicas arqueológicas. VI Congresso Ibérico de Arqueometría (2005).

Google Scholar

[3] C. Jácome and L. A. C. Souza: Análises arqueométricas de cerâmica e argilas do Médio Rio Doce – MG. Resumos do III Simpósio de Técnicas Avançadas em Conservação de Bens Culturais – Olinda, (2006).

Google Scholar

[4] W. K. Junior, A. L. Oderich, J. C. C. Pureza, F. Tiburi and W. F. S. Junior: Revista Design em Foco Vol. 1 (2006), p.51.

Google Scholar

[5] M. Alves: Análise cerâmica: estudo tecnotipológico. Doutorado (Tese) São Paulo, 1988. FFLCH/USP/SP.

Google Scholar

[6] U. P. Rodrigues Filho, M. Felicíssimo, R. C. Bicudo, P. V. Silva Jr, and J. L. Peixoto: Estudos Arqueométricos de Cerâmicas Indígenas Pré-Coloniais do Pantanal Sul-matogrossense. In: 24 Reunião Anual Sociedade Brasileira de Química, Poços de Caldas 2001. Proceeding .. Poços de Caldas 2001. p.162.

DOI: 10.25249/0375-7536.19912333

Google Scholar

[7] C. Jácome: Estudo dos materiais utilizados na cerâmica pintada Tupiguarani de Minas Gerais. Mestrado (Dissertação) Belo Horizonte 2006. EBA /UFMG.

Google Scholar

[8] Introduction to TG/DTA/DSC – Illinois Institute of Technolgy USA.

Google Scholar

[9] A. Barba, et all.: Matérias primas para la fabricación de soportes de baldosas cerâmicas. Castellón, Espanha: Graficas Castañ, (1997).

Google Scholar

[10] JCPDS – Joint Committee on Powder Diffraction Standards, By Total Access Diffraction Database.

Google Scholar

[11] R. P. S. Dutra: Efeito da velocidade de aquecimento nas propriedades de produtos da cerâmica industrial. Doutorado (Tese) Natal, 2007. UFRGN.

Google Scholar

[12] M. V. Gerotto, S. S. Cabo, M. D. M. Innocentini, V. C. Pandofelli: Cerâmica Vol. 46 (2000), p.201.

Google Scholar

[13] B. S. Carneiro, R. S. Angélica, T. Scheller, E. A. S. DE Castro and R. F. Neves: Vol. 49 (2003), p.242.

Google Scholar

[14] W. H. Gitzen: Alumina as a ceramic material. American Ceramic Society (1985), p.32.

Google Scholar