An Investigation on the Mechanical Alloying of TiFe Compound by High-Energy Ball Milling

Article Preview

Abstract:

This work reports the efforts to obtain TiFe intermetallic compound by high-energy ball milling of Ti and Fe powder mixtures. This process route has been used to provide a better hydrogen intake in this compound. Milling was carried out in a SPEX mill at different times. Strong adherence of material at the vial walls was seen to be the main problem at milling times higher than 1 hour. Attempts to solve this problem were accomplished by adding different process control agents, like ethanol, stearic acid, low density polyethylene, benzene and cyclohexane at variable quantities and keeping constant other milling parameters like ball to powder ration and balls size. Better results were attained with benzene and cyclohexane, but with partial formation of TiFe compound even after a heat treatment (annealing) of the milled samples.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 660-661)

Pages:

329-334

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.J. Reilly and R.H. Wiswall Jr.: Inorg. Chem. Vol. 13 (1) (1974), p.218.

Google Scholar

[2] A. Sarkar and R. Banerjee: Int. J. Hydrogen Energy Vol. 30 (2005), p.867.

Google Scholar

[3] K. Aoki, H. Aoyagi, A. Memezawa and T. Masumoto: J. Alloys Comp. Vol. 203 (1994), p. L7-L9.

DOI: 10.1016/0925-8388(94)90704-8

Google Scholar

[4] H. Aoyagi, K. Aoki and T. Masumoto: J. Alloys Comp. Vol. 231 (1-2) (1995), p.804.

Google Scholar

[5] C.B. Jung, J.H. Kim and K.S. Lee: Nanostruct. Mater. Vol. 8 (8) (1997), p.1093.

Google Scholar

[6] S. Morris, S.B. Dodd, P.J. Hall, A.J. Mackinnon and L.E.A. Berlouis: J. Alloys Comp. Vols. 293-295 (20) (1999), p.458.

Google Scholar

[7] M. Bououdina, D. Fruchart, S. Jacquet, L. Pontonnier and J.L. Soubeyroux: Int. J. Hydrogen Energy Vol. 24 (9) (1999), p.885.

Google Scholar

[8] C. -H. Chiang, Z. -H. Chin and T. -P. Perng: J. Alloys Comp. Vol. 307 (2000), p.259.

Google Scholar

[9] E. Jankowska, M. Makowiecka and M. Jurczyk: J. Alloys Comp. Vols. 404–406 (2005), p.691.

Google Scholar

[10] I. López-Báez , F.J. Espinoza-Beltrán and G. Barreiro-Rodríguez: Rev Mex. Fís. Vol. 52, (3) (2006), p.278.

Google Scholar

[11] H. Hotta, M. Abe, T. Kuji, and H. Ushida: J. Alloys Comp. Vol. 439 (1)-22007, p.221.

Google Scholar

[12] M. Abe and T. Kuji: J. Alloys Comp. Vols. 446–447 (2007), p.200.

Google Scholar

[13] B. -L. Chu, S. -M. Lee, and T. -P. Perng: Int. J. Hydrogen Energy Vol. 16 (6) (1991), p.413.

Google Scholar

[14] J. Eckert, L. Schultz and K. Urban: J. Non-Cryst. Solids Vol. 127 (1991), p.90.

Google Scholar

[15] L. Zaluski, P. Tessier, D. H. Ryan, C. B. Doner, A. Zaluska, J.O. Ström-Olsen, M.L. Trudeau and R. Schulz: J. Mater. Res., vol. 8 (12) (1993), p.3059.

DOI: 10.1557/jmr.1993.3059

Google Scholar

[16] A.A. Novakova, O.V. Agladze, S.V. Sveshnikov and B.P. Tarasov: Nanostruct. Mater., Vol. 10 (3) (1998), p.365.

Google Scholar

[17] A. Szajek, M. Jurczyk and E. Jankowska: J. Alloys Comp. Vol. 348 (1-2) (2003), p.285.

Google Scholar

[18] M. Jurczyk, E. Jankowska, M. Makowiecka and I. Wieczorek: J. Alloys Comp. Vol. 354 (2003), p. L1.

Google Scholar

[19] F. Delogu and G. Cocco: J. Alloys Comp., Vol. 352 (2003), p.92.

Google Scholar

[20] T. Saito: J. Alloys Comp. Vol. 364 (2004), p.113.

Google Scholar

[21] S. Bouaricha, J. P. Dodelet, D. Guay, J. Huot and R. Schulz: Activation characteristics of graphite modified hydrogen absorbing materials, Vol. 325 (2001), p.245.

DOI: 10.1016/s0925-8388(01)01390-1

Google Scholar

[22] M. J. Choi, H. S. Hong and K. S. Lee: J. Alloys Comp., vol. 358 (1-2) (2003), p.306.

Google Scholar

[23] L. Lü and M. O. Lai: Mechanical Alloying, First Edition (Kluwer Academic Publishers, Boston, 1998).

Google Scholar

[24] C. Suryanarayana: Progr. Mater. Sci. Vol. 46 (2001), p.1.

Google Scholar