Structural and Morphology Characterization ZSM-5 Zeolite by Hydrothermal Synthesis

Article Preview

Abstract:

Zeolite ZSM-5 have been synthesized by hydrothermal method, using tetrapropylammonium bromide as template. This work aims to evaluate the preparation and characterization structural and morphology of zeolite ZSM-5 resulting in a pure and crystalline material. The ZSM-5 zeolite was prepared by hydrothermal synthesis at 170 °C, using silica, deionized water and structure-directing salt (tetrapropylammonium bromide-TPABr). Several techniques like X ray diffraction (XRD), scanning electron microscopy (SEM) and X ray energy dispersion spectrophotometer (EDX) have been utilized to characterize the framework structure and morphology of the sample. Obtaining ZSM-5 zeolite could be confirmed by X ray diffratograms. The result X ray diffraction showed that the synthesized sample presented typical peaks of the ZSM-5 zeolite. According to the XRD, it is possible to observe intense and well defined peaks. The acquired X ray patterns identified the product as highly-crystalline materials, without the presence of impurities. From the images obtained by SEM, it was possible are composed of showed that the crystal accumulations of ZSM-5 zeolite, without the presence secondary phases on the crystals.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 660-661)

Pages:

543-548

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Corma: Chem. Rev. Vol. 95 (1995), p.559.

Google Scholar

[2] P.A. Jacobs, J.A. Martens, in: H. van Bekkum, E.M. Flanigen, J.C. Jansen (Eds. ), Introduction to Zeolite Science and Practice, Studies in Surface Science and Catalysis, vol. 58, Elsevier, Amsterdam, 1991, p.445.

DOI: 10.1016/s0167-2991(08)63596-x

Google Scholar

[3] M.E. Davis and R.F. Lobo: Chem. Mater. 4 (1992), p.756.

Google Scholar

[4] R.J. Argauer and G. R. Landolt: US Patent 3 702 886, (1972).

Google Scholar

[5] T.F. Degnan, G.K. Chitnis and P.H. Schipper: Micropor. Mesopor. Mater. Vols. 35–36 (2000), p.245.

Google Scholar

[6] N. Viswanadham, J.K. Gupta, G. Murali Dhar and M.O. Garg: Energy & Fuels Vol. 20 (2006), p.1806.

Google Scholar

[7] D. Van Vu, M. Miyamoto, N. Nishiyama, Y. Egashira and K. Ueyama: J. Catal. Vol. 243 (2006), p.389.

Google Scholar

[8] O.E. Kartal and I. Onal: Chem. Engin. Commun. Vol. 195 (2008), p.1043.

Google Scholar

[9] F. Schüth: Annu. Rev. Mater. Res. Vol. 35 (2005), p.209.

Google Scholar

[10] S. Donk, A.H. Janssen, J.H. Bitter and K.P. Jong: Catal. Rev. Vol. 45 (2003), p.297.

Google Scholar

[11] K. Egeblad, C.H. Christensen, M. Kustova and C.H. Christensen: Chem. Mater. Vol. 20 (2008), p.964.

Google Scholar

[12] D. W. Breck: Zeolite Molecular Sieves (New York: Wiley, 1974).

Google Scholar

[13] M.G.F. Rodrigues: Síntese da ZSM-5 sem a formação da fase de gel e sua atividade na alquilação do tolueno com metanol. Mestrado (Dissertação) São Carlos 1992. UFSCar.

Google Scholar

[14] Y. Cheng, L.J. Wang, J.S. Li, Y.C. Yang and X.Y. Sun: Mater. Lett. Vol. 59 (2005), p.3247.

Google Scholar

[15] E.A. Urquieta-González, L.L. Martins, R.P.S. Peguin and M.S. Batista: Materials Research Vol. 5 (3) (2002), p.321.

Google Scholar

[16] M.M.J. Treacy and J.B. Higgins: Collection of Simulated XRD Powder Patterns for Zeolites (International Zeolite Association, 4th ed., 2001).

DOI: 10.1016/b978-044450702-0/50138-6

Google Scholar

[17] G.P. Gianneto: Zeolitas: Características, Propriedades y Aplicaciones Industriales (Caracas: Ed. Innovación Tecnológica, 1990).

Google Scholar

[18] A. Ribera, I.W.C.E. Arends, S. Vries, J. Pérez-Ramírez and R.A. Sheldon: J. Catal. Vol. 195 (2000), p.287.

Google Scholar