Microstructure, Crystalline Phase, and Dielectric Property Analyses of TiO2 Composition with ZrO2 Addition

Article Preview

Abstract:

For microwave applications, including mobile and satellite communications, ceramic resonators should have a high dielectric constant, low dielectric losses, and high frequency stability. In this sense, TiO2-ZrO2 ceramics have been investigated as a function of sintering behavior, phase composition, and microstructure. The ceramics were densified reaching a value of about 86% of theoretical density at 1400°C sintering temperature. The ceramics are prepared by mixing raw materials with the following TiO2-ZrO2 weight % ratio: 100 to 0, 90 to 10, and 80 to 20, respectively. The measured dielectric constants are between 79 and 88 values, while the quality factor due to dielectric losses are between 2820 and 5170. These results point out the influence of Ti/Zr ratio on controlling the dielectric properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 660-661)

Pages:

641-645

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Wersing: Curr. Opin. Solid State Mat. Sci. Vol. 1 (1996), p.715.

Google Scholar

[2] J.F. Banfield, D.R. Veblen, and D.J. Smith: Am. Mineral Vol. 76 (1991), p.343.

Google Scholar

[3] M.H. Lindsley: Rev. Mineral Vol. 25 (1991), p.69.

Google Scholar

[4] C.T. Dervos, E. Thirios, J. Novacovich, P. Vassiliou, and P. Skafidas: Mater. Lett. Vol. 58 (2004), p.1502.

Google Scholar

[5] W. Swamy, J.D. Gale, and L.S. Dubrovinsky: J. Phys. Chem. Solids Vol. 62 (2001), p.887.

Google Scholar

[6] G. Madras, B.J. McCoy, and A. Navrotsky: J. Am. Ceram. Soc. 90 (2007), p.250.

Google Scholar

[7] S.R. Yoganarasimhan and C.N.R. Rao: Trans. Faraday Soc. Vol. 58 (1962), p.1579.

Google Scholar

[8] K.J.D. MacKenzie: Trans. J. Br. Ceram. Soc. Vol. 74 (1975), p.29.

Google Scholar

[9] C. Byun, J.W. Jang, I.T. Kim, K.S. Hong, and B.W. Lee: Mater. Res. Bull. Vol. 32 (1997), p.431.

Google Scholar

[10] Y. Li, T.J. White, and S.H. Lim: J. Solid State Chem. Vol. 177 (2004), p.1372.

Google Scholar

[11] P.S. Ha, H.J. Young, H.S. Jung, K.S. Hong, Y.H. Park, and K.H. Ko: J. Colloid Interface Sci. Vol. 223 (2000), p.16.

Google Scholar

[12] X.Z. Ding, and X.H. Liu: J. Alloy Comp. Vol. 248 (1997), p.143.

Google Scholar

[13] T. Sasmoto, S. Enomoto, Z. Shimoda, and Y. Saeki: J. Ceram. Soc. Jpn. Vol. 101 (1993), p.230.

Google Scholar

[14] Y. Hu, H.L. Tsai, and C.L. Huang: J. Eur. Ceram. Soc. Vol. 23 (2003), pp.691-699.

Google Scholar

[15] H. Zhang, and J.F. Banfield: J. Mater. Res. Vol. 15 (2000), pp.437-448.

Google Scholar

[16] K.N.P. Kumar, K. Keizer, A.J. Burggraaf, T. Okubo, and H. Nagamoto: J. Mater. Chem. Vol. 3 (1993), pp.1151-1160.

Google Scholar

[17] Y.U. Ahn, E.J. Kim, H.T. Kim, and S.H. Hahn: Mater. Lett. Vol. 57 (2003), pp.4660-4666.

Google Scholar

[18] G.B. Song, J.K. Liang, F.S. Liu, T.J. Peng, and G.H. Rao: Thin Solid Films Vol. 491 (2005), pp.110-116.

Google Scholar

[19] F. Matteucci, G. Cruciani, M. Dondi, and M. Raimondo: Ceram. Int. Vol. 32 (2006), p.385–392.

Google Scholar

[20] C.K. Shin, Y.K. Peak, and H.J. Lee: Int. J. Appl. Ceram. Tech. Vol. 3 (2006), p.463–469.

Google Scholar

[21] H.E. Chao, Y.U. Yun, H.U. Xingfang, and A. Larbot: J. Eur. Ceram. Soc. Vol. 23 (2003), p.1457–1464.

Google Scholar

[22] R. Arroyo, G. Cordoba, J. Padilla, and V.H. Lara: Mater. Lett. Vol. 54 (2002), p.397–402.

Google Scholar

[23] R. Vogel, P. Hoyer, and H. Weller: J. Phys. Chem. Vol. 98 (1994), p.3183–3188.

Google Scholar

[24] A. Silva, F. Azough, R. Freer and C. Leach: J. Eur. Ceram. Soc. 20 (2000), p.2727–2734.

Google Scholar

[25] R.D. Shannon: Acta Cryst. Vol. A 32 (1976), p.751–757.

Google Scholar