Use of Microwave Energy for Obtaining the Mullite

Article Preview

Abstract:

The kaolin beneficiation industries produce waste that is rich in Al2O3 and SiO2, oxides that when sintered at high temperatures react to form mullite. Due to the rare occurrence of the mullite mineral in nature, the number of studies in order to obtain it has been growing in recent years due to its properties excellent. This study aims to examine the feasibility of the use of microwave energy as an alternative to synthesize mullite from kaolin residue, since the use of microwave energy in the synthesis of materials has gained importance for the speed and economy when compared to conventional methods. The compositions studied (residual kaolin + alumina) were established according to the stoichiometry of mullite. The samples were sintered in a microwave oven home changed, varying power and time. It was observed that with the increase of these variables the intensity of the peaks of the mullite phase increased.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 660-661)

Pages:

893-898

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. R. Menezes et al. : Revista Matéria Vol. 12 (1) (2007), pp.226-236.

Google Scholar

[2] M. I. Brasileiro et. al.: Materials Science Forum Vols. 530-531 (2006), pp.625-630.

Google Scholar

[3] M. S. Barata and D. C. C. Dal Molin: Associação Nacional de Tecnologia do Ambiente Construído, Vol. 2 (1) (2002), p.669.

Google Scholar

[4] M.I. Brasileiro et. al.: Materials Science Forum Vols. 591-593 (2008), p.799.

Google Scholar

[5] L. N. L. Santana et. al.: Influência das matérias-primas em corpos cerâmicos contendo resíduo de caulim. 51° Congresso Brasileiro de Cerâmica. 2007. Proceeding… pp.1-12.

DOI: 10.1590/s0366-69132005000300010

Google Scholar

[6] H. Shneider, J. Schreuer and B. Hildmann: J. Eur. Ceram. Soc. Vol. 28 (2008), p.329.

Google Scholar

[7] H. Shneider and S. Komanerni: Mullite (Federal Republic of Germany, 2005).

Google Scholar

[8] S.C. Vieira, Ramos and M.T. Vieira: Vol. 33 (2007), p.59.

Google Scholar

[9] R.R. Monteiro, A.C.S. Sabioni and G.M. da Costa: Cerâmica Vol. 50 (2004), p.318.

Google Scholar

[10] M. Panneerselvam and K.J. Rao: Chem. Mater Vol. 15 (2003), p.2247.

Google Scholar

[11] Z. Xie, J. Yang, X. Huang and Y. HUANG: Journal of European Ceramic Society Vol. 19 (1999), p.381.

Google Scholar

[12] W.H. Sutton: Am. Ceram. Soc. Bull. Vol. 68 (1989), p.376.

Google Scholar

[13] S.S. Park, K.S. Jung, B.W. Kim, S.E. Lee and H.C. Park: Glass Tech. Vol. 43 (2002), p.70.

Google Scholar

[14] R. R. Menezes, P.M. Souto and R.H.G.A. Kiminami: Cerâmica Vol. 53 (2007), p.1.

Google Scholar

[15] M.S. Spotz, D.J. Skamser and D.L. Johnson: Journal American Ceramic Society Vol. 78 (1995), p.1041.

Google Scholar

[16] G. Roussy, A. Bennani and J.M. Thiebaut: Journal Apllied Physics Vol. 62 (1987), p.1167.

Google Scholar

[17] A. Dé, I. Ahmad, D. Whitney and D.E. Clark: American Ceramic Society Vol. 21 (1991), p.319.

Google Scholar

[18] M.A. Janney, C.L. Calhon and H.D. Kimrey: Journal American Ceramic Society Vol. 75 (2) (1992), p.341.

Google Scholar

[19] A. Dé, I. Ahmad, D. Whitney and D.E. Clark: American Ceramic Society Vol. 21 (1991), p.329.

Google Scholar

[20] R. R. Menezes, P.M. Souto and R.H.G.A. Kiminami: Cerâmica Vol. 53 (2007), p.218.

Google Scholar

[21] F. Sahnoune, M. Chegaar, N. Saeb, P. Goeuriot and F. Valdivieso: Applied Clay Science Vol. 38 (2008), p.304.

DOI: 10.1016/j.clay.2007.04.013

Google Scholar

[22] K.C. Liu and G. Thomas: J. Am. Ceram. Soc. Vol. 77 (6) (1994), p.1545.

Google Scholar