Ni-Zn Nanoferrites Synthesized by Microwave Energy: Influence of Exposure Time and Power

Article Preview

Abstract:

This paper describes the synthesis of Ni-Zn nanoferrites by combustion reaction using microwave energy as a heating source, and evaluates the performance of these materials as absorbers of electromagnetic energy at frequencies between 4 - 12 GHz. The influence of the synthesis conditions on the structure, morphology and absorption characteristics was investigated. The powders were characterized by DRX, BET, AGM and reflectivity measurements in the frequency bands of 8 to 12 GHz. The XRD results show the formation of Ni-Zn ferrite phase and Fe2O3 and Ni as secondary phases. The crystallite sizes ranged from 32 to 42 nm. The parameters of exposure time and power of the microwave oven changed the final characteristics of the resulting powders. The morphology of all the powders consisted of soft nanoparticle agglomerates. The best saturation magnetization and attenuation results were 70 emu/g and -4.1 dB in the frequency of 10 GHZ.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 660-661)

Pages:

910-915

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. C. F. M. Costa: PhD (Thesis). São Carlos, 2001. UFCar. (In Portuguese).

Google Scholar

[2] A. C. F. M. Costa, E. Tortella, M. J. Kaufman, M. R Morelli and R. H. G. A. Kiminami: J. Mater. Sci. Vol. 37 (2002), p.1.

Google Scholar

[3] D. A. Vieira, V. C. S. Diniz, R. L. P. Santos, T. S. Barros, R. H. G. A. Kiminami and A. C. F. M. Costa. 52º CBC. (2008).

Google Scholar

[4] P. Pigram: Ceramic Transactions, Microwaves: Theory and Applications in Materials Processing. (J. Binner, D. Whitaker, American Ceramic Society, 2ª ed Westerville, Ohio 1993).

Google Scholar

[5] A. Bhaskar, B. Rajini and S. R. Murthy: J. Mater. Sci. Vol. 39 (2004), p.3787.

Google Scholar

[6] Y. -J. Yang, C. -I. Sheu, S. -Y. Cheng and H. -Y. Chang: J. Magn. Magn. Mater. Vol. 284 (2004), p.220.

Google Scholar

[7] R. R. Menezes: PhD (Thesis) São Carlos, 2005. UFSCar (In Portuguese).

Google Scholar

[8] A. Dias, N. D. S. Mohallem and R. L. Moreira: Mater. Res. Bull. Vol. 33 (3) (1998), p.475.

Google Scholar

[9] Y. S. Cho, D. Schaffer, V. L. Burdick and V. R. W. Amarakoon: Mater. Res. Bull. Vol. 34 (14/15) (1999), p.2361.

Google Scholar

[10] M. A. Janney and H. D. Kimrey: Ceramic Transactions, Sintering of Advanced Ceramics Vol. 7 (1990), p.382.

Google Scholar

[11] M. A. Janney, C. L. Calhon and H. D. Kimrey: Ceramic Transactions, Microwaves: Theory and Applications in Materials Processing Vol. 21 (1991), p.311.

Google Scholar

[12] M. A. Janney, C. L. Calhon and H. D. Kimrey: J. Am. Ceram. Soc. Vol. 75 (2) (1992) p.341.

Google Scholar

[13] H. Klung and L. Alexander: X-ray diffraction procedures (New York: Wiley, 1962).

Google Scholar

[14] D. Louer; T. Roisnel. DICVOL91 For Windows, Laboratoire de Cristallochimie, Universite de Rennes I, Campus de Beaulieu, France, (1993).

Google Scholar