Controlled Synthesis of Fe3O4 Nanosheets via P123 Micelle Template

Article Preview

Abstract:

Magnetic iron oxide nanomaterials (e.g. Fe3O4 and γ-Fe2O3) with different morphologies have aroused extensive attention due to their fundamental research and potential technological applications such as magnetic recording media, magnetic fluids and magnetic drug-targeting. In this article Fe3O4 nanosheets were successfully synthesized using triblock copolymer (PEO)20(PPO)70(PEO)20 (P123) micelles as structure-directing agents in the presence of surfactant-assisted ethylene glycol (EG) and precipitator hexamethylenetetramine (HMTA) at 70 °C for 2 h in N2. The Fe3O4 nanosheets have irregular shape with thickness of the Fe3O4 nanosheets about 10-15 nm. The X-ray diffraction (XRD) pattern confirms the Fe3O4 nanosheets have magnetite structure and its nine distinguishable diffraction peaks can be perfectly indexed to the (111), (220), (311), (222), (400), (422), (511), (440), and (533) planes of the fcc structure of magnetite. Its saturation magnetization (σs) is 58.4 emu/g. The possible formation mechanism of the Fe3O4 nanosheets in present work is proposed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 663-665)

Pages:

1125-1128

Citation:

Online since:

November 2010

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.L. Cushing, V.L. Kolesnichenko and C. O'Connor: Chem. Rev. Vol. 104 (2004), p.3893.

Google Scholar

[2] J. Zhang, G. Hong and J. Ni: Progress in Chemistry Vol. 21 (2009), p.880.

Google Scholar

[3] J.L. Zhang, R.S. Srivastava and R.D.K. Misra: Langmuir Vol. 23 (2007), p.6342.

Google Scholar

[4] Y.W. Jun, J.W. Seo and J. Cheon: Acc. Chem. Res. Vol. 41 (2008), p.179.

Google Scholar

[5] K. An and T. Hyeon: Nano Today Vol. 4 (2009), p.359.

Google Scholar

[6] P. Lu, J.L. Zhang, Y.L. Liu, D.H. Sun, G.X. Liu, G.Y. Hong and J.Z. Ni: Talanta Vol. 82 (2010) p.450.

Google Scholar

[7] M.V. Kovalenko, M.I. Bodnarchuk, R.T. Lechner, R.T. Lechner, G. Hesser, F. Schäffler and W. Heiss: J. Am. Chem. Soc. Vol. 129 (2007), p.6352.

DOI: 10.1021/ja0692478

Google Scholar

[8] A. Shavel and L. M. Liz-Marzán: Phys. Chem. Chem. Phys. Vol. 11 (2009), p.3762.

Google Scholar

[9] Y.Y. Zheng, X.B. Wang, L. Shang, C.R. Li, C. Cui, W.J. Dong, W.H. Tang and B.Y. Chen: Materials Characterization Vol. 61 (2010), p.489.

Google Scholar

[10] J. Wan, X. Chen, Z. Wang, X. Yang and Y. Qian: Journal of Crystal Growth Vol. 276 (2005), p.571.

Google Scholar

[11] L. Li, Y. Chu, Y. Liu and D. Wang: Journal of Alloys and Compounds Vol. 472 (2009), p.271.

Google Scholar

[12] Z. Huang, Y. Zhang and F. Tang: Chem. Commun. (2005), p.342.

Google Scholar

[13] K.C. Chin, G.L. Chong, C.K. Poh, L.H. Van, C.H. Sow, J. Lin and A.T.S. Wee: J. Phys. Chem. C. Vol. 111 (2007), p.9136.

Google Scholar

[14] H. Zhou, R. Yi, J. Li, Y. Su and X. Liu: Solid State Sciences Vol. 12 (2010), p.99.

Google Scholar

[15] T. Liu, C. Burger and B. Chu: Prog. Polym. Sci. Vol. 28 (2003), p.5.

Google Scholar

[16] D. Zhao, J. Feng, Q. Huo, M. Melosh, G.H. Fredirckson, B.F. Chemlka and G.D. Stucky: Science Vol. 279 (1998), p.548.

Google Scholar

[17] T. Wang, Z. Ma, F. Xu and Z. Jiang: Electrochemistry Communications Vol. 5 (2003), p.599.

Google Scholar