The Important Role of Oxidant in Copper Interconnection Chemical Mechanical Polishing for GLSI

Abstract:

Article Preview

Chemical mechanical planarization (CMP) of copper interconnection in hydrogen peroxide (H2O2) as oxidizer based alkaline slurry was investigated. The new model is put forward, which is based on the characteristic of H2O2, chemical kinetics and mechanical removal. This properties of H2O2 can be effectively compensated the defect of surface topology during the process of polishing. Researcher previous study has shown that the surface is largely copper metal with Cu2O at low H2O2 concentrations and largely CuO at high H2O2 concentrations. Cu2O is more easily removed by both chemical and mechanical processes than CuO. During the CMP process, as the oxidizer concentration increases, the removal rate goes up initially followed by a gradual decay. This characteristic of oxidizer is used to achieve copper surface global planarity. The surface planarity was achieved by removing high area on the surface more quickly relative to the low area, because the concentration of Cu2O in the low area as the passivation film is more than the high area. Meanwhile the passivation film of the low area is thicker than the high area. In order to achieve polishing process optimization, the influence of pH adjustment and pressure, are also taken into consideration. Combining both RR and PE, the optimal H2O2 concentration and pressures are in range 1.0 ~1.5 vol% and 0.04 ~0.07 mpa, respectively. The roughness of surface which is measured by AFM is 0.49 after CMP.

Info:

Periodical:

Materials Science Forum (Volumes 663-665)

Edited by:

Yuan Ming Huang

Pages:

1111-1114

DOI:

10.4028/www.scientific.net/MSF.663-665.1111

Citation:

X. Y. Liu et al., "The Important Role of Oxidant in Copper Interconnection Chemical Mechanical Polishing for GLSI", Materials Science Forum, Vols. 663-665, pp. 1111-1114, 2011

Online since:

November 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.