ZnO/SiO2 Nanocomposite Cryogels Prepared by Vacuum Freeze Drying

Article Preview

Abstract:

In recent years, ZnO/SiO2 nanocomposite thin films have attracted much attention for a wide range of device applications based on their specific optical and electrical properties. Traditionally, the ZnO/SiO2 nanocomposites were prepared at the form of thin film because the ZnO/SiO2 nanocomposite gels are difficult to synthesize. Therefore, in the present study, a novel route of the mixed ZnO/SiO2 nanocomposite cryogels were prepared by sol-gel technology and dried by vacuum freeze drying. The wet gels were synthesized by co-precursor method with the precursors containing tetraethoxysilane [Si(OC2H5)4,TEOS] and zinc acetate [Zn(CH3COO)2.2H2O]. After vacuum freeze drying, the nanocomposites were annealed at different temperature. The properties of the resulting ZnO/SiO2 nanocomposite cryogels were characterized using Scanning Electron Microscopy (SEM), nitrogen absorption/desorption isotherms, thermogravimetric and differential scanning calorimeter (TG-DSC).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 663-665)

Pages:

1242-1246

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Anedda, C. Cannas, A. Musinu, G. Pinna, G. Piccaluga and M. Casu: J. Nanopart. Res. Vol. 10 (2008), p.107.

DOI: 10.1007/s11051-007-9235-5

Google Scholar

[2] V. Musat, P. Budrugeac and C. Gheorghies: J. Therm. Anal. Cal. Vol. 94 (2008), p.373.

Google Scholar

[3] P.B. Sarawade, J.K. Kim, H.K. Kim and H.T. Kim: Appl. Surf. Sci. Vol. 254 (2007), p.574.

Google Scholar

[4] S. Chakrabarti, D. Das, D. Ganduli and S. Chaudhuri: Thin Solid Films Vol. 441 (2003), p.228.

Google Scholar

[5] S. Polarz, F. Neues, M.B. Vanden, W. Grunert and L. Khodei: J. Am. Chem. Soc. Vol. 127 (2005), p.12028.

Google Scholar

[6] M.M. Viitanen, W.P.A. Jansen, R.G. van Welzenis and H.H. Brongersma: J. Phys. Chem. B Vol. 103 (1999), p.6025.

Google Scholar

[7] H.L. Xia and F.Q. Tang: J. Phys. Chem. B Vol. 107 (2003), p.9175.

Google Scholar

[8] S. Lu, H. Liu, L. Zhang and X. Yao: Chin. Sci. Bull. Vol. 41 (1996), p.230.

Google Scholar

[9] C. Cannas, M. Casu, A. Musinu, A. Lai and G. Piccaluga: J. Mater. Chem. Vol. 9 (1999), p.1765.

Google Scholar

[10] L.F. Su, L. Miao, G. Xu and S. Tanemura: Adv. Mater. Res. Vol. 105 (2010), p.852.

Google Scholar

[11] K. Han, Z.H. Zhao, Z. Xiang, C.L. Wang, J.H. Zhang and B. Yang: Mater. Lett. Vol. 61 (2007), P. 366.

Google Scholar

[12] G. He, J.H. Cai and G. Ni: Mater. Chem. Phys. Vol. 110 (2008), p.113.

Google Scholar