Structure and Low Melting Property of Vanadate Tellurite Glass

Article Preview

Abstract:

The glasses (80-x)TeO2·xV2O5·20MO (M=Sn, Bi, Ca, Na and K) had been examined as potential replacements for PbO-based glass frits with low firing temperature. The glasses with TeO2 0-44 mol%, and V2O5 39-82 mol% are not suitable for glass frit since they are easy to crystallize. The glasses with the content of the TeO2 54-74 mol%, and the V2O5 9-29 mol% were investigated by differential scanning calorimetry, X-ray diffraction, infrared spectra and fluidity evaluation experiments. The glasses possess appropriate fluidity and do not crystallize in the re-melting process at 723-753 K. The glass transition temperature of the glasses is at 544-578 K. The structure of the glasses is layer upon layer mainly connected by the structure units of [VO4] and [TeO3]. Other modifier ions locate mainly between the layers. The isolated V=O band from the VO5 bipyramids is not occurred in the vitreous structure of the glasses.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 663-665)

Pages:

1229-1233

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Bersani, G. Antonioli, P. P. Lottici, Y. Dimitriev, V. Dimitrov and P. Kobourova: Non-Cryst. Solids. Vol. 232 (1998), p.293.

DOI: 10.1016/s0022-3093(98)00494-3

Google Scholar

[2] A.A. El-Moneim: Mater. Chem. Phys. Vol. 73, (2002), p.318.

Google Scholar

[3] F.M. Ezz-Eldin: Nucl. Instrum. Meth. B. Vol. 1599, (1999), p.166.

Google Scholar

[4] S. Mandal, S. Hazra, D. Das and A. Ghosh: Non-Cryst. Solids Vol. 183, (1995), p.315.

Google Scholar

[5] V. Dimitrov: Non-Cryst. Solids, Vol. 192 (1995), p.183.

Google Scholar

[6] J.M. Lewis, C.P. OBrien, M. Affatigato and S.A. Feller: Non-Cryst. Solids Vol. 293 (2001), p.663.

Google Scholar

[7] K.V. Ramesh and D.L. Sastry: Physica B. Vol. 387 (2007), p.45.

Google Scholar

[8] E. Mansour, Y.M. Moustafa, G.M. EI-Damrawi, S. Abd EI-Maksoud and H. Doweidar: Physica B. Vol. 305 (2001), p.242.

DOI: 10.1016/s0921-4526(01)00622-6

Google Scholar

[9] S. Chakraborty, M. Sadhukhan, B.K. Chaudhuri, H. Mori and H. Sakata: Mater. Chem. Phys. Vol. 50 (1997), p.219.

Google Scholar

[10] S. Sen and A. Ghosh: Non-Cryst. Solids Vol. 258 (1999), p.29.

Google Scholar

[11] G.D. Khattak and N. Tabet: Electron Spectrosc. Relat. Phenom. Vol. 136 (2004), p.257.

Google Scholar

[12] M.S. Aziz, F. Abdel-Wahab, A.G. Mostafa and E.M. EI-Agwany: Mater. Chem. Phys. Vol. 91 (2005), p.532.

Google Scholar

[13] P. Machowski, M. Opallo, J.E. Garbarczyk and M. Wasiucionek: Solid State Ionics Vol. 157 (2003), p.287.

Google Scholar

[14] N. Tashtoush, A.M. Qudah and M.M. El-Desoky: Non-Cryst. Solids Vol. 68 (2007), p. (1926).

Google Scholar

[15] V. Rajendran, N. Palanivelu, B.K. Chaudhuri and K. Goswami: Non-Cryst. Solids Vol. 320 (2003), p.195.

Google Scholar

[16] V. Dimitrov, Y. Dimitriev and A. Montenero: Non-Cryst. Solids Vol. 180 (1994), p.51.

Google Scholar

[17] C.N. Reddy, V.C. Veeranna Gowda and R.P. Sreekanth Chakradhar: Non-Cryst. Solids Vol. 354 (2008), p.32.

Google Scholar

[18] M.M. EI-Desoky and M.S. AI-Assiri: Mater. Sci. Eng. B. Vol. 137 (2007), p.237.

Google Scholar

[19] S.A. Ketkar, G.G. Umarji, G.J. Phatak, J.D. Ambekar, I.C. Rao, U.P. Mulik and D. P. Amalnerkar: Mater. Sci. Eng. B. Vol. 132 (2006), p.215.

DOI: 10.1016/j.mseb.2006.02.027

Google Scholar

[20] J. -Y. Song and S. -Y. Choi: Displays Vol. 27 (2006), p.112.

Google Scholar

[21] R. Morena: J. Non-Cryst. Solids Vol. 263 (2000), p.382.

Google Scholar

[22] China Industry Standard of SJ3232. 3, (1989).

Google Scholar

[23] Y. Dimitriv, V. Dimitrov, M. Arnaudov and D. Topalov: J. Non-Cryst. Solids Vol. 57 (1983), p.147.

Google Scholar